ESERCITAZIONI 2019 DEL CORSO DI

PROGETTAZIONE ASSISTITA DA COMPUTER

CLM ING. VEICOLI

ES.9 ANALISI DELLE TENSIONI IN DUE CILINDRI FORZATI

Obbiettivo:

Dati due cilindri forzati mostrati in Figura 1, con e senza la pressione esterna, si vuole:

- determinare l'andamento delle principali componenti di tensione (assiale, radiale e circonferenziale) lungo il raggio;
- confrontare i valori ai 3 raggi con i valori analitici.
- facoltativo: determinare la velocità angolare per cui la pressione di contatto dimezza.

Dati del problema:

- Modulo di Young = 210000 MPa
- Raggio interno=1100 mm
- Raggio Intermedio = 1200 mm
- Raggio esterno = 1300 mm
- Pressione interna = 10 MPa
- Pressione esterna = 0
- Interferenza radiale = 1 mm

Metodi:

- Si costruisce il modello FEM (Fig.2) utilizzando elementi piani in formulazione assialsimmetrica ed elementi di contatto piani (Es. 169 e 171) per rappresentare il forzamento iniziale.
- Si rappresenta l'andamento delle principali componenti di tensione (assiale, radiale e circonferenziale) lungo il raggio, utilizzando il comando PATH.
- per il quesito facoltativo: usare il comando OMEGA, assegnare la densità al materiale, usare unità di misura MKS

Fig. 1

Fig. 2

Traccia

C*** C*** CILINDRI FORZATI C*** C*** USO ELEMENTI CONTACT E TARGET, COMANDI PATH C*** FINISH /CLEAR *AFUN,DEG /PREP7 C*** C*** PARAMETRI C*** RI0=1100 **!RAGGIO INTERNO** RIN=1200 **!RAGGIO DI CONTATTO** RES=1300 **!RAGGIO ESTERNO** INT=1 !INTERFERENZA RADIALE **!PRESSIONE INTERNA** PIN=10 PES=0 **!PRESSIONE ESTERNA** L=1000 **!LUNGHEZZA ASSIALE MODELLO !DIMENSIONE ELEMENTI** ESZ=25 C*** C*** MODELLO SOLIDO C*** ----------C*** C*** MATERIALE C*** -----C*** C*** ELEMENTI C*** et,1 inserire elemento piano assialsimmetrico et,2 inserire elemento target piano 169 et,3 inserire element contact piano 172 KEYOPT inserire per l'elemento 172 l'opzione "Include offset only with ramped effects" R,1, RMORE,,,,INT C*** C*** VINCOLI C*** vincolare linee alla base cilindri o dopo mesh nodi C*** C*** MESH C*** type,1

meshare usando i comandi lesize, meshkey, mshape, amesh

ASEL,,AREA,,1,1 selezionare le linee dell'area, la linea al raggio interno e I nodi di tale linea (LSLA, LSEL, NSLL) TYPE,2 REAL,1 ESURF lassocia gli elementi 2 e le real constants 1 agli elementi associate ai nodi selezionati ASEL,,AREA,,2,2 come sopra per il secondo cilindro TYPE,3 REAL,1 **ESURF** ALLS C*** C*** SOLUZIONE C*** /SOLU SOLVE LSEL,,LOC,X,RI0-0.01,RI0+0.01 !seleziona linea al raggio interno e applica pressione interna SFL,ALL,PRESS,PIN ripetere la stessa cosa al raggio esterno applicando pressione esterna ALLS SOLVE C*** C*** POST-PROCESSING C*** /POST1 C*** C*** VISUALIZZAZIONE PRIMO CALCOLO, SOLO INTERFERENZA C*** SET,1 /TITLE, SENZA PRESSIONE PATH, PIPPO, 2,, 300 individuare 2 punti (raggio interno ed esterno) a metà altezza con PPATH definire tensioni assiale, radiale e circonferenziale con PDEF graficare le 3 tensioni con PLPATH *ASK, IFL, RETURN PER CONTINUARE, 0 C*** C*** VISUALIZZAZIONE SECONDO CALCOLO, INTERFERENZA + PRESSIONE C*** SET,2 /TITLE,CON PRESSIONE

come sopra