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Character of Partial Differential Equation of Mathematical Physics 

• The mathematical character of Partial Differential Equations (PDEs) is 
relevant for their numerical discretization 

 the numerical scheme should reflect, though approximately, the way 
in which relevant information is propagated throughout the 
computational domain 

 boundary and initial conditions must be imposed in the numerical 
method in agreement with the way information is propagated 

• The classification of PDEs envisages three different characters addressing 
different phenomena; grossly speaking: 

 hyperbolic: phenomena involving the propagation of wave fronts 
progressing along specific space-time paths with finite speed 

 parabolic: phenomena involving 
infinite speed of propagation in space 
and progressing in time 

 elliptic: steady-state distribution of 
scalars in space 

• Examples of hyperbolic equations 

 

 the advection of a scalar 
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 the compressible Euler equations 
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• Examples of parabolic equations 

 the diffusion of a scalar (heat, concentration) 
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 the laminar boundary layer  
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• Examples of elliptic equations 

 the steady temperature distribution in a solid or the electric 
potential in a domain 

 
 the steady neutron flux distribution in a reactor core 
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when steady and may be parabolic in transient form 
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 The sets of partial differential equations as the ones describing fluid-
dynamics can be classed into hyperbolic, parabolic or elliptic by 
evaluating their “characteristic roots” 

 the system must be written in the form 

     , , , , , ,x t x t x t
t x

 
 

 
φ φ

A φ B φ c φ  

where   is the vector of unknowns, e.g.  , ,p u w   for single-phase flow 
and  , , , , ,l v v l vp u u w w   for two-phase flow  

 then, the “characteristic equation” is solved   

 

 For the scalar advection equation, 0
T T

w
t x

 
 

 
, the matrices A and B 

degenerate into 1 and w, giving the characteristic root w  , showing the 
hyperbolic character of advection. 

 Generally speaking,  

o when the roots of this equation (characteristic roots) are real, the 
system is said hyperbolic and the characteristic roots represent the 
slope of the characteristic lines in the x-t plane, to be interpreted as the 
lines along which the relevant information is transported; it is: 

i
i

dx

dt
   

o when all the characteristic roots are complex, the system is said 
elliptic; 

o in all the other cases, the system is said parabolic. 

 To better understand the situation, it is worth considering another 
classification, that can be shown to be equivalent to the above one and 
applies to second order partial differential equations 
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The classification is based on the value of   2, 4x t b ac   ; for  , 0x t   the 
equation is hyperbolic, for   2, 4 0x t b ac     the equation is parabolic and 
for   2, 4 0x t b ac     the equation is elliptic. 

 The relation between the two classifications can be understood considering that the 
above second order equation can be converted to a system of first order partial 
differential equations. In fact, by putting 

 det 0 B A
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 the second order equation can be rewritten as the system of equations 
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 and the characteristic equation becomes 
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 For the vibrating string equation it is 
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The equation is therefore hyperbolic and the two characteristic roots 
represent the speed of propagation of perturbation (waves) along the x 
axis in the forward and in the backward directions 

 For the telegraph equation, it is 
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So, also this equation is hyperbolic and the two characteristic roots 
depend on the ratio of the two appearing constants. In both cases, the 
real characteristic roots, represent the speed at which information is 
propagated in space during time for hyperbolic phenomena; the 
characteristic lines represent the paths in the space-time plane along 
which information is propagated: their local slope is given by the 
characteristic roots 
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In the figure below, it is clarified that the “domain of dependence”, 
enclosed by the characteristic lines (they may be two and straight, as in 
the right figure, or more than two and even curved if the characteristic 
roots are not constant, as in the left one), represents the region from 
which the state in any given point P  depends: the relevant information 
affecting it cannot come from outside the region. 

 
 The telegraph equation helps in understanding that the speed of 

propagation of information in the heat equation becomes infinite. In 
fact, for vanishing   it is  
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and the two characteristic roots 
1,2     become infinite. This means 

that any perturbation travels with 
infinite speed forth and back along the 
x axis, and the domain of dependence is all the region below a certain 
time t .  

 For the 2D Laplace equation, it is: 
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and the roots are found to be complex conjugated, showing the elliptic 
character of the equation. 

  

Some of the above properties can be extended to multidimensional cases and 
it may happen that equations have a mixed mathematical character, i.e. with 
hyperbolic (e.g., advection or convection) terms and parabolic (e.g., diffusion) 
terms.  
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 Sometimes one or the other characteristic dominates, so that we have a 
clear hyperbolic or parabolic behaviour, but sometimes the behaviour is 
mixed.  

 A classical example are the equations of fluid-dynamics that, in 
similarity with the neutron diffusion equation seen in the module of Reactor 
Physics, can be derived by an integral, “finite volume” balance, to be reverted 
to partial differential form as follows.  
The general form of multidimensional balance equations to be solved in fluid 
dynamics is obtained by conservation principles over arbitrary and finite 
volumes 

( ) ( )

V S S V

Rate of change Flux of out of S Flux of out of S Volumetric
of in V due to fluid motion due to molecular motion source of

advection or convection diffusion

d
dV dS dS S dV

dt     

 
 

          
   

w n n  

where   is the specific value per unit mass of the extensive variable  , being 
the subject of the balance, and   and S  are, respectively, the diffusion 
coefficient and the source per unit mass  

 
By a conventional passage, the balance equation over the arbitrary 

volume V is firstly transformed by the use of the divergence theorem 
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V V V V

Rate of change Flux of out of S Flux of out of S Volumetric
of in V due to fluid motion due to molecular motion source of

advection or convection diffusion
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and then the arbitrariness of the selected control volume and the continuity 
of the functions allows to infer that if 

      0
V

S dV
t                w  

this implies that the integrand function must be zero everywhere: 
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Transient term or convection term

S
t     

       
  

w  

 
 In other words, the principle of conservation established for a finite 
volume is translated to the differential (infinitesimal) form 
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Since this is the general form of the equations involved in fluid flow, 
numerical methods are conceived to deal with the terms appearing in it. 
 
 It will be seen that, making use of the “finite volume” technique of 
discretization, the red arrow in the previous sketch must be inverted: from 
the differential equation we must go back to the finite volume conservation 
principle. 

 Please, note the similarity with the combination of the equation of 
neutron continuity and the Fick’s law, giving the neutron diffusion equation. 

In this case, neutrons are assumed to have a single energy and 
2
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the specific meaning of scalar neutron flux, given by the product of neutron 
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 Considering the presence of an absorption rate, given by  
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and a volumetric source of neutrons 
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Now, making use of the divergence theorem and introducing the Fick’s law 
and the flux in place of the density, we get 
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1

a neutrons
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Finally, grouping all the terms into a single integral and considering again 
the arbitrary nature of its selection, we get 

1
0a neutrons
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and then  
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v t
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 There is no surprise in recognising that the same techniques apply for 
deriving the balance equations (continuity) for the generic “scalar” in a fluid 
and for the neutron (continuity and) diffusion equation. 

 It must be in fact remarked that in both cases a basic assumption on the 
“continuity” of the field is adopted. In other words, we are not looking at the 
single particles composing the system but to the continuous distribution of 
their properties, e.g., density, temperature, velocity, etc. 

 The mathematical character of the transient diffusion equation is clearly 
parabolic. In particular: 

 there is a “marching coordinate” (time) which is “one-sided”, since 
phenomena evolve along it in a specific direction, requiring an single 
“initial” information about the system status; 

 there is one or more spatial coordinate that, owing to the second order 
differentiation, are “two-sided”, i.e., require information (i.e., boundary 
conditions) on both sides for advancing the solution. 
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PRELIMINARY CONSIDERATIONS 

ON NUMERICAL DISCRETISATION 
 

Very seldom, partial differential equations for real-life engineering 
problems admit closed form solutions.  

 Non-linearity of some terms, complex dependence of basic properties on 
the solution generally introduce difficulties needing to revert to calculation 
resources 

 Most of the adopted numerical discretisation techniques refer to three 
categories, though more sophisticated schemes (e.g., spectral, pseudo-
spectral, etc.) are also introduced. The three main techniques are: 

 finite difference methods: the partial derivatives in the equations are 
substituted with appropriate expressions in terms of “finite differences” 
of the functions and of the independent variables (e.g., a derivative may 
be substituted by an incremental ratio), leading to systems of algebraic 
equations in the unknown variables 

 finite volume methods: in this case the partial differential equations 
(PDEs) are reverted back to the integral form they were drawn from (see 
previous pages) and the volume and surface integrals appearing in them 
are expressed in algebraic form, leading to systems of algebraic equations 
in the unknown variables 

 finite element methods: these techniques make use of the “method of 
weighted residuals” (to be discussed later on) in which the solution of the 
equation is expressed in approximate form (generally, in terms of low 
degree polynomials) and the resulting discrepancy obtained in the PDE 
by substituting it (the “residual”) is dealt with by integrating after 
multiplying by a weighting function; also this process leads to systems of 
algebraic equations in the unknown variables 

In this course, it is chosen to illustrate examples of applications of the three 
techniques, discussing in the end their relevant features. So, we will start 
with “intuitive” discretisations of the problems we will be facing and then 
we will reflect on the generalisation of the adopted techniques 

 The figure in the next page provides anyway the general sketch of the 
problems faced when passing from a partial differential equation problem 
to its approximate numerical solution. 
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Later on we will discuss the basic mathematical properties of consistency, 
stability and convergence that numerical schemes need to satisfy to be sound 
tools in our hands 

In addition to these properties we must consider another relevant property 
of numerical schemes adopted for engineering applications that can be stated 
as follows: 

 
while solving by numerical means a conservation equation, care must be taken 

that no spurious sources or sinks of the conserved quantity will appear even 
while working with finite space and time increments 

 
 In other words, we can afford having an approximate solution of our 
equations, because of the use of a coarse time or space grid, but we can never 
afford that the discretization process will not preserve exactly the conserved 
quantity: this “conservative” character of the numerical schemes is therefore 
a fundamental requirement 

DIFFERENTIAL 
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Discretization 

ALGEBRAIC PROBLEM 
(Equations + boundary and 

initial conditions) 

Solution of 
algebraic equations 

APPROXIMATE 
SOLUTION 

Boundary and 
Initial Conditions 

Partial Differential 
Equations 

Choice of a  
Discretization Method 
(finite differences, finite 

volumes, finite elements, …) 

Integration Domain 
Discretization 

(“gridding” or “meshing”) 

Convergence criteria 
(e.g., on residuals) 

Methods for solving linear 
and non-linear systems 

(SOR, LOR, ADI, Gradient 
Methods, Multigrid Schemes, 

Newton-Raphson, …) 
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THE EQUATIONS CONSIDERED  
IN THIS COURSE 

 

With respect to the program of the course held in past years (up to 
Academic Year 2015-2016), this course reconsiders the previous material 
having the ambition to cover a wider range of problems, at the price of 
simplifying or discarding some treatment 

 

In particular, though the attention is still focused on the numerical models 
for Reactor Physics, elements regarding the treatment of fluid-dynamic 
problems are introduced 

 

This choice is coherent with the need to provide learners with knowledge 
and skills that will allow them to tackle the multi-physics coupled problems 
that is necessary to solve for nuclear reactor core analysis in normal and 
accident conditions 

 

So, the problems to be coped with will involve the numerical modelling 
aspects of: 

 reactor criticality problems, by steady-state neutron diffusion 
equations; 

 reactor kinetics problems, by the transient neutron diffusion equation; 
 neutron transport, by the integral and the integro-differential equation; 
 thermal-hydraulic and Computational Fluid Dynamic (CFD) equations, 

together with some of their solution techniques 

 

The result is intended to be an overall global picture of numerical solution 
techniques that the learner will possibly integrate in his/her understanding 
of the reactor cores and their behaviour 


