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EIGENVALUE (OR CRITICALITY) PROBLEMS 
 

 
 The static neutronic design of nuclear reactor core involves different 

aspects related to: 

 the calculation of the effk  and of the flux spatial distribution in 

different configurations 

 the prediction of the evolution of reactor isotopical composition 
with the increase of burn-up: the so-called “life” or “depletion” 
calculations 

 
 Eigenvalue problems, which can be expressed also in forms other 

than the simple calculation of effk  (e.g., identifying the critical 

absorption cross section, liquid boron concentration or the critical 
reactor size) are quite relevant in the definition of reactor core 
parameters as the lattice pitch, the level of enrichment and control 
rod characteristics 

 In heterogeneous reactors eigenvalue problems require the 
numerical solution of neutron diffusion (or more seldom transport) 
equations dealing with detailed geometry and isotopic composition 
data 

 Both space and energy discretization is required in this step 
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CRITICALITY CONDITIONS 
FOR A PLANE HOMOGENEOUS SLAB 

Reminder of the analytic solution 
 
One-group differential problem 
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The general solution of the above equation is 
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Boundary conditions are then imposed 
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Since in the definition of   only k  is variable, it is: 
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Considering the different harmonic modes it can be observed that 

 the eigenvalues k  are such as it is ...21  kk  

 the fundamental mode is the only one being characterised by   01 x  
for ax 0 ; 

 on the other hand, we know from Reactor Physics that it is the one 
on which the neutron flux settles in steady-state conditions and it is 
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 therefore, for steady-state problems, considering that the layer of 
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CRITICALITY CONDITIONS 
FOR A PLANE HOMOGENEOUS SLAB 

Numerical Solution 
 
 
 
 
 
 The spatial dicretisation of the problem can be obtained by 
subdividing the range  a,0  into segments having uniform length, h , and 
putting 

 ii x   
 Different discretization approaches can be adopted for turning the 
differential equation into an algebraic one; here we choose 
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In order to obtain an approximation of the second order derivative, a 
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 Making use of these approximations, the differential equation 
expressing 1D diffusion in the layer can be reverted to this finite 
difference approximation form 
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while the boundary conditions take the form 
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 A system of n  equations in the n  unknowns of the nodal fluxes 
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a homogeneous linear algebraic system is obtained, having the classical 
form of a three-point equation 
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 Writing the system in the form 
0A  

it can be noted that: 
 in the system matrix the only 

coefficients being different from 
zero can be found in the main 
diagonal and the two adjoining 
ones: the matrix is three-diagonal 

 the neutron flux in each node is 
therefore directly related only to the 
one in the neighbouring nodes, a 
numerical effect clearly deriving by the discretization of the leakage 
term (the second order derivative). 
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SOLUTION (at least from a purely theoretical standpoint): 

 The “characteristic equation” 
 det 0k A        

can be solved by any suitable means, identifying the n  single or 
multiple eigenvalues nkkk ...,,, 21 . 

 The eigenvectors corresponding to each ik  are then identified: 
 an appropriate non-zero minor of  ikA  having 1n  order can be 

selected; 
 the corresponding algebraic system of order 1n  obtained by 

assigning and arbitrary value to one of the unknowns i  can be 
solved by any suitable technique. 
 
Therefore, with respect to the analytic solution, the finite 

difference discretised equation provides only n  eigenvalues, 
representing approximations of the eigenfunctions of the problem in the 
continuum space. 
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 For instance, in this particular case it can be demonstrated that 
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NOTES: 
 
 In most neutronic problems, it is just necessary to evaluate the 

fundamental eigenvalue, 1k , and the corresponding fundamental 

eigenvector,  1 . 
 
 Obviously in real life reactors, an accurate multidimensional space 

and energy description is necessary, aiming at determining reliable 
estimates of the effk  and of the steady-state neutron flux distribution. 

 
 Only in some selected cases, it is necessary to get information about 

the higher order harmonic modes, as it is the case for Boiling Water 
Reactors (BWRs) to evaluate the possible occurrence of “out-of-
phase” or “regional” oscillations due to the thermal-hydraulic 
feedback. 

 

 
 
 In fact, the thermal-hydraulic feedback may make more probable 

the occurrence of normally “subcritical” modes, which may mostly 
govern the transient evolution 

 
 WARNING: introducing the thermal-hydraulic feedback (e.g., the 

Doppler effect, the moderator temperature effect, the void and 
pressure effects) the equation of neutron diffusion are no more 
“linear”: so, the power level, which is immaterial in purely neutronic 
criticality problems, becomes important 

 

 

Core wide

Power Oscillations



 

Regional

Power Oscillations
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MULTIGROUP EIGENVALUE PROBLEMS 
A multigroup eigenvalue problem can be expressed making use of the 
diffusion theory in the form 

           
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in which k  is the parameter giving rise to eigenvalues; it is also 
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i.e., g  is the fraction of neutrons produced by fission in g-th energy 
group and the “removal cross section” is defined as 
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 In order to solve these equations, it can be noted that, defining the 
total fission neutron source as  
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and putting 
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the steady-state diffusion equations with G  energy groups become 
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It can be noted that: 

 the first equation involves only the fission source and the neutron 
flux in the first energy group; 

 the subsequent equations involve the fission source, the neutron flux 
in the group and the slowing down terms from previous (higher 
energy) groups; 

 the initial homogeneous problem has been formally turned into a 
non-homogeneous one. 

 
It is therefore possible to envisage a solution procedure based on 

the following steps: 

1. a tentative distribution of the fission source,  r
 , and a tentative 

value of the multiplication factor, k , are assigned as    r
0  and  0k  

respectively; this allows obtaining the group sources    rS g
0  

2. after an appropriate spatial discretization (see later on), the group 
equations are solved in sequence: 

 the first equation is solved, obtaining an updated estimate of the 
neutron flux in the first group,    r

1
1 ; 

 the slowing down source from the first group appearing in the 
second equation can be therefore evaluated, then solving the 
equation for    r

1
2 ; 

 a similar procedure is adopted for all the higher index group 
equations, evaluating the appropriate slowing down sources from 
higher energy groups 

3. the fission source can be then updated on the basis of the new fluxes, 
obtaining    r

1 , and the estimate of the eigenvalues is also updated 
according to a “generational” formulation 
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k
neutron source adopted at the previous iteration r dV

k




 







  

then, the sources    rS g
1  are calculated again and the processi s 

repeated from step 2 until convergence. 
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 The scheme includes two different phases: 

 iterations on the fission source, named outer iterations; 

 the solution of the equation of single group equations, performed as 
if they were representing mono-energetic decoupled equations 
having the form  

          0 rSrrrgradrDdiv ar

   

since very often the solution of these equations is performed by using 
iterative methods, this step is named inner iterations. 

 

 

 The adopted iteration scheme is described in the figure reported 
in the next page. 

 

NOTES: 

 The scheme is general enough to be applied making use of any 
operator describing the neutronic behaviour, including the transport 
equation. 

In fact, by changing the diffusion operator with the more accurate 
transport one, the same “lower triangular” structure of the slowing 
down matrix  ,s g g r


 appears, whenever a slowing down process is 

addressed. This allows to apply the same strategy, whenever a 
suitable spatial discretization of the transport operator is adopted. 

 The lower-triangular structure of the differential scattering matrix 
is obviously lost when thermalisation problems are dealt with. 

In fact, when the energy of neutrons becomes comparable with 
that of target nuclei, “up-scattering” may occur in addition to 
“down-scattering”. 

In such cases, the scattering source becomes as “coupled” as the 
fission source. A similar treatment of these terms can be therefore 
envisaged. 
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INNER ITERATIONS 
FORM OF THE FINITE DIFFERENCE EQUATIONS 
 
 
 As explained above, a key point in solving eigenvalue problems is the 

numerical solution of group equations having the general 
monokinetic non-homogeneous form: 

         rSrrrgradrDdiv ar

    

 In the light of numerical solution, it is important to highlight the 
main features of the algebraic linear systems obtained by the 
discretization of diffusion equations in one or more space dimensions 

 

One-dimensional Problems 
 
 In the case of the criticality problem related to a slab containing 

multiplicating material dealt with above, it was shown that the 
obtained linear system was homogeneous and had a tri-diagonal 
matrix; i.e., three-point equations were obtained: 

 niaaa iiiiiiiii ...,,1011,,11,     

 It is clearly understood that a similar discretization in the case of a 
fixed source (non-homogeneous) problem for a uniform property 
slab  

      00
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2
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dx

d
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provides three-point formulations 
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D
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it is 
 niSaaa iiiiiiiiii ...,,111,,11,     
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 However, uniform property problems are scarcely relevant for 
practical applications; it is by far more interesting to deal with multi-
layer problems 

 
EXERCISE 
Let us consider a classical way of providing a discretization of such 
problems by a “finite volume” technique 
 
 
 
 
 
 
 
 
 
 

 Intervals (“nodes”) are assigned such as each layer contains an 
integer number of them and each interval has uniform properties 

 Fluxes are evaluated in the centres of each interval (nodes) 

 Each node is assigned the volume iV  of the interval 

 In this case, the volume iV  and the surfaces 
iA  e 

iA  are defined by 

 plane geometry: 212/1   iii rrV , 1 
ii AA  

 cylindrical geometry:  2
2/1

2
2/1   iii rrV , 212 

  ii rA , 212 
  ii rA  

 spherical geometry:  3
2/1

3
2/13

4
  iii rrV , 2

2/14 
  ii rA , 

2
2/14 

  ii rA  

where   2/12/1 iii rrr    and   2/12/1   iii rrr  

 Diffusion equations are integrated throughout each iV  

  
i ii V V

a
V

dVSdVdVgraddivD  
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 use is made of the divergence theorem 

















 

i iiii A r
ii

r
ii

AV du

d
AD

du

d
ADdA

du

d
DdA

du

d
DdVgraddivD

2/12/1

 

 a linear distribution of the flux is assumed within each semi-
interval connecting the node to each interface 

2/1

2/1

2/1

2/1

















ii

ii
ii

ii

ii
ii

V
rr

AD
rr

ADdVgraddivD
i

 

 interfacial fluxes thus appearing are eliminated by assuming 
the continuity of currents through the interfaces; e.g.: 

1/ 2 1 1/ 2
1

1/ 2 1 1/ 2

i i i i
i i

i i i i

D D
r r r r

     


  

 
  

   

2/11

1

2/1

1
2/11

1

2/1
2/1




























ii

i

ii

i

i
ii

i
i

ii

i

i

rr

D

rr

D

rr

D

rr

D

 

 absorption and source terms are then evaluated 

iiia
V

a VdV
i

 ,   ii
V

VSdVS
i

  

 It is then obtained 

2/1

2/1

2/1

2/1

















ii

ii
ii

ii

ii
ii rr

AD
rr

AD


iiia V  , ii VS  

that represents again a three-point formula in the nodal fluxes, if 
it is considered that 

2/11

1

2/1

1
2/11

1

2/1
2/1

























ii

i

ii

i

i
ii

i
i

ii

i

i

rr

D

rr

D
rr

D

rr

D 
     

2/112/1

1

2/1
1

12/1

1

2/1



























ii

i

ii

i

i
ii

i
i

ii

i

i

rr

D

rr

D

rr

D

rr

D
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In fact, let’s check that: 

































































































































2/11

1

2/1

2/11

1

2/1
1

2/11

1

2/1

2/1

2/11

1

2/1

1
2/11

1

2/1

2/12/1

2/1

ii

i

ii

i

ii

i

ii

i
ii

ii

i
i

ii

i

ii

ii

i

ii

i

ii

i

i
ii

i
i

ii

i

ii

ii

ii

ii
ii

rr
D

rr
D

rr
D

rr
D

rr
D

rr
D

rr

AD

rr

D

rr

D
rr

D
rr

D

rr

AD

rr
AD








 

 iii

ii

i

ii

i

ii

i

ii

i

A

rr

D

rr

D
rr

D

rr

D

 







 














1

2/11

1

2/1

2/11

1

2/1

 

In order to understand the meaning of the above formulation, let us 
rewrite it as: 

   ii

iandinodesbetweenrD
ofvalueaveragedweighetd

ii
iiii

ii

i

ii

i

ii

i

ii

i

ii

ii
ii

r

D
AA

rr

D

rr

D
rr

D

rr

D

rr
ADareasurfacecurrentvolumeright
























































1

1/

1,
1

2/11

1

2/1

2/11

1

2/1

2/1

2/1



 

___________________________________________ 
Suggested personal study activity 
Prove that  

   1
,1

1

2/12/1

1

2/12/1

1

2/1

2/1



















 





















iii
ii

iii

ii

i

ii

i

ii

i

ii

i

ii

ii
ii A

r

D
A

rr
D

rr
D

rr

D

rr

D

rr
AD 

 

as it can be obtained from the previous relation by an appropriate change of the 
indices.  

 
Noting the above, we recognise that the steady neutron balance 
equation in the volume 
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2/1

2/1

2/1

2/1

















ii

ii
ii

ii

ii
ii rr

AD
rr

AD


iiia V  , ii VS  

can be rewritten as: 

   
    

surfacelefttheatneutronsofrateleakage

ii
ii

i

surfacerighttheatneutronsofrateleakage

ii
ii

i r

D
A

r

D
A 1

,1
1

1,









 

















 


rateabsorption

iiia V , 
ratesource

ii VS  

holding for each internal point of the discretization. So, it is: 

ii
iii r

D
Aa

,1
1,




 









   
1,

1,



 










ii

iii r

D
Aa  

iia
ii

i
ii

iii V
r

D
A

r

D
Aa ,

,11,
, 


























 iii VSb   

and 

, 1 1 , , 1 1i i i i i i i i i ia a a b         
In the layers close to the boundaries 3rd kind boundary conditions 

can be again assumed 

  0
0

000 



rdr

d
r     0




Nr
NNN dr

d
r  

 thus closing the problem. 

____________________________________________________________ 
Suggested personal study activity 
Try to express the formulations for different boundary conditions in the first and 
the last node. 
 
Hint 
Restart from the equation 

2/1

2/1

2/1

2/1

















ii

ii
ii

ii

ii
ii rr

AD
rr

AD


iiia V  , ii VS  

and assume: 
a) 01 2/1  andi ; what does this condition mean? how does the equation for 
the first node look like? 

b) 01
2/11

2/11 




rr

andi


; what does this condition mean? how does the equation 

for the first node look like? 
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c) 01 2/1
2/11

2/11
21 




 
rr

andi ; what does this condition mean? how does the 

equation for the first node look like? 
 
Further Hint 
For the first node the equation is: 

2/11

2/11
11

12/3

12/3
11 rr

AD
rr

AD







  
111, Va 11VS  

or also (remember the above developments) 

 
2/11

2/11
1112

2,1 rr
AD

r

D
Ai 












  
111, Va 11VS  

So, work on this form. You must end up with a formulation that has the form: 

1,1 1 1,2 2 1a a b    

Repeat the above for the last node Ni  with N the number of intervals. 

 
Suggested personal study activity 
Try showing that in case of Cartesian coordinates, constant diffusion coefficient 
and uniform spatial discretization the equation 

   
    

surfacelefttheatneutronsofrateleakage

ii
ii

i

surfacerighttheatneutronsofrateleakage

ii
ii

i r

D
A

r

D
A 1

,1
1

1,









 

















 


rateabsorption

iiia V , 
ratesource

ii VS  

is equivalent to the “finite difference” approximation  

iiia
iii S

h
D 


  

,2
11 2

 

NB: These discretization techniques can be used also for other physical 
problems (e.g., for heat conduction, electrostatic potential) having an 
elliptic character 

     rqrTgradrkdiv r

    

    0 rVgradrdiv r

   
As a general conclusion: 

The finite volume discretization of steady-state diffusion equations  
in 1D leads to linear algebraic systems having a three-diagonal matrix 

This conclusion can be extended to some discretization schemes other 
than finite volumes, e.g., to “coarse-mesh” methods to be described 
later on 
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SOLUTION OF THREE-DIAGONAL MATRIX SYSTEMS 

 The solution of TDM systems is particularly simple by an algorithm 
being a special case of the Gauss elimination scheme.  

 The matrix is represented in the form (e.g., for 8N ): 

 

 

 

 

 

 

 

 

putting 

1,  iii au   iii av ,   1,  iii aw  

The following two-sweeps technique is adopted known as Thomas’ 
algorithm (or TDMA=Three-Diagonal Matrix Algorithm) 

1. with increasing index (first sweep): 

1

1
1 v

w
    1...,,2

1







Ni
uv

w

iii

i
i  

1

1
1 v

S
    Ni

uv

uS

iii

iii
i ...,,2

1

1 







 

2. with decreasing index (second sweep): 

NN    1 iiii  

 

In particular: 

 the first sweep eliminates an unknown in the equations; 

 the second is needed to solve the upper triangular system thus 
obtained. 
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
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Multidimensional Problems 
 
 Let us consider the quarter reactor lattice 

represented in the figure 
 
 It is discretised through a 2D grid with 

rectangular (or square) meshes 
 
 If the reactor is homogeneous, the steady 

diffusion equation has the form 

S
dy

d

dx

d
D a 









 





2

2

2

2

 

 By a simple finite-difference equation, it is 

jijia
y

jijiji

x

jijiji
S

hh
D ,,2

1,,1,

2

,1,,1 22














 



 

 

clearly representing a 5 point formulation 

 Similarly, for a three-dimensional problem 

S
dz

d

dy

d

dx

d
D a 









 








2

2

2

2

2

2

 

a 7 point formula is obtained  





 
 

2

,,1,,,,1 2

x

kjikjikji

h
D  

kjikjia
z

kjikjikji

y

kjikjikji
S

hh
,,,,2

1,,,,1,,

2

,1,,,,1, 22











 

 

 For non-uniform properties, similar techniques as the ones shown 
for the 1D case can be applied 
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 In fact, though the above formulations are related to the case of 
uniform properties, it is quite clear that non-uniformity does not 
change the structure of the involved matrices 
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CHARACTERISTICS OF THE OBTAINED 

LINEAR SYSTEM MATRICES 
 We just noted that in 1D cases three-diagonal matrices are obtained, 

to be efficiently dealt with by the Thomas algorithm 

 In multi-dimensional cases, 5 or seven point 
formulas are instead obtained; the single-index 
numbering adopted for the grid nodes 
determines the structure of the matrix 

 For instance, in the case of a homogeneous grid 
with 9 nodes numbered as in the figure, a 
following banded matrix system is obtained 
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


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
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where 

2,
4

h

D
a aii     ji

h

D
a ji 

2,  

In fact, from the notation with two indices 

jijia
y

jijiji

x

jijiji S
hh

D ,,2

1,,1,

2

,1,,1 22










 



  


 

reordering with a single index and assuming hhh yx   as in the figure, 
e.g. the equation for the node number 5 becomes 

552
258

2
456 22

S
hh

D a 





 




 
 

NB: We must easily understand shift from multiple index to single index 
numbering of the unknown variable. 

1 2 3 

4 5 6 

7 8 9 
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It can be therefore noted that matrices obtained in 2D and 3D cases are 
band matrices. Moreover, the following general properties are obtained 
by most of the discretization procedures: 

    Nia ii ,...,10,  the main diagonal is non-zero (1) 

  jiaa ijji 0,,  the matrix is symmetric and off-diagonal 

terms have opposite sign with respect to diagonal ones 
   


N...,,iaa

ji
j,iji,i 1  the matrix is diagonally dominant 

(note that this occurs if 0 a !!!) 

                                                           
(1) Obviously, a particular sign of the equations is assumed to write the inequalities so we obtained positive diagonal 
terms. Reversing the sign does not change the meaning of the above conclusions. 
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REMINDER ABOUT THE METHODS FOR SOLVING 
SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 

 

 The Cramer rule represents an inefficient method for solving linear 
algebraic equation systems, involving too many operations 

 As known, other methods are therefore adopted, subdivided into two 
main categories 

 Direct Methods: they provide the virtually exact solution (only 
round-off error comes into play) with a finite number of 
operations 

 Iterative Methods: they provide the solution as a limit a successive 
approximations 

 In neutronic problems, as well as in many other engineering 
problems, the latter are the most frequently adopted ones: in our 
case, this is where “internal iterations” get their name from 

 Let us consider an algebraic system specified in the form: A s  

Direct Methods 
 Gauss or successive elimination method 

 By this method, equations are linearly combined in order to obtain 
an equivalent linear system having an upper triangular matrix, 
whose solution is straightforward 
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 The solution of the obtained system is immediate, since it is just 
needed to solve the last (trivial) equation and to back-substitute in 
the previous ones 

 The steps to be followed in this respect are: 
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1. the first equation is added side by side to each subsequent one, 
after multiplying it by appropriate factors; in particular, for the 

r-th equation ( 2r ), the factor is 
11

1

a

ar ; it is: 
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2. then, the second equation is added side by side to all the 

subsequent ones ( 3r ) after multiplying it by 
22

2

a

ar



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3. a similar procedure is adopted up to the  1N -th equation, thus 
obtaining an upper triangular system matrix. 

 

 In general, in order to reduce round-off errors, it is possible to 
change the order of equations in such a way that: 

 ,..3,2111  raa r    ..4,3222  raa r  etc. 

 a technique referred to as partial pivoting  

 As previously mentioned, the Thomas algorithm represents a the 
particular formulation of the Gauss method for the simpler cases of 
three-diagonal matrix systems 
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 Gauss-Jordan Method 

 In this case, equations are linearly combined in order to obtain a 
diagonal matrix system 
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 The procedure is similar to the one of Gauss method, but each 
equation is added to “all” the others (both preceding and following 
ones) after multiplications by appropriate factors 

 Also in this case “pivoting” techniques can be used 

 

 Factorisation Methods 

 The Gauss method can be considered as a particular case of 
triangular factorisation methods 

 In general, by factorisation methods 

 the matrix A  is factored in the product of a lower triangular 
matrix, L , by an upper triangular one, U   

A LU  

 the solution of the given system is then reduced to the solution 
of two system with triangular matrix (that is immediate) 

   LU s L s U     

The difficulty of the application of the method is therefore reduced 
to the step of factorisation, for which different algorithms (e.g., 
Doolittle, Crout, Cholesky) are available in classical textbooks (2) 

 

                                                           
(2) See, e.g., A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, 2007. 
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Iterative Methods 
 General Considerations 

A general iterative method for solving linear algebraic systems has 
the form 

     1 1,2,...k k k  H c   

where H  is termed the iteration matrix and c  is an appropriate 
vector, whose definition characterise the specific numerical scheme. 
If   is the exact solution of the system A s , a convergence condition 
of the numerical scheme will be  

 H c   

By subtracting the two latter relationships it is 
     1 1,2,...k k k     H     

and, introducing the error vector    k k    , it is 
     1 1,2,...k k k H   

and then 
     0 1,2,...k k k H   

Making use of vector and matrix norms (see below), it is 
     0 1,2,...k k k H   

Necessary and sufficient condition for the convergence of the iterative 
scheme, i.e. in order to be  

 lim 0k

k
  

for any  0  is that  
lim 0k

k
  

 

that is sometimes expressed by saying that the iteration matrix must be 
convergent. 
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Definition. A matrix n nH   is said to be convergent if 

lim k

k
 0  

Definition. The spectral radius   H  of a matrix is the maximum 
modulus of any of its eigenvalues. 

 

In our purposes it is sufficient to remember that: 

 

Theorem: A necessary and sufficient condition for a matrix n nH   to 
be convergent is that   1 H . 

 

Therefore, in order to apply with success an iterative method it is 
necessary and sufficient that the iteration matrix has spectral radius 
  1 H . 

 

 Reminder about norms and spectral radius 

Definition: A vector norm is an application : nn    such that, given 
two vectors v  e nw   and   , it is 

   
   
     

0, 0n e n if and only if

n n

n n n

 
  


  

v v v 0

v v

v w v w
 

The most common vector norms are: 
 max i

i

v

v   (L-norm or also maximum norm) 

 1 i
i

vv  (L1-norm or also absolute norm) 

 2
v v   (L2-norm or also Euclidean norm) 

These norms can be formally obtained by putting , 1, 2p    in the 
general formulation 

1 p
p

ip
i

v
   
 
v  
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Given a vector norm, 
p

 , an application from n n  to   is said to 

be a compatible (or induced or subordinate) matrix norm if it satisfies 

0

sup p

p
p




v

H v
H

v  

It can be shown that the three norms that are compatible with (or 
are induced from or are subordinate to) the three above considered 
vector norms are  

 ,max i k
i

k

h

 H  maximum absolute row sum norm 

 ,1
max i k

k
i

h H  maximum absolute column sum norm 

  2

T
H H H  spectral norm 

These norms are also said natural norms. Some properties of the 
matrix norms are shortly recalled: 

  0 0   H H H 0  

  H H  

   H J H J    H J H J   Hv H v  

In our purposes it is interesting to remember the following 

Theorem (by Hirsch): 

For any of the three natural norms it is 

  H H . 

In fact, as a consequence of this theorem, it is: 

A sufficient condition for a matrix n nH   to be convergent 

is that any of its natural norms be less than unity. 
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The Jacobi Method 

To obtain the iterative scheme, the system matrix is decomposed in a 
diagonal part and an off-diagonal one: 

 A D E  
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The linear system is then rewritten as: 

 D E s   

It must be noted that, since in our cases it is always 0iia , it is possible 
to calculate 1D , being the diagonal matrix having non-zero elements 

equal to the reciprocal of the non-zero elements of D . As a 
consequence, it is: 

1 1  D E D s   

and, putting 
1JΗ D E   1q D s  

it is 
 JH q   

It can be recognised that it is 0iib  and 
13 112

11 11 11

23 221

22 22 22

31 32 3

33 33 33
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n n n
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a a a

a a a

    
 
 
   
 
 
   
 
 
 
     
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



    



 

When A  is diagonally dominant, it is therefore: 

 niH
n

j
ijJ ...,,11

1
, 



   1

JΗ      1 JΗ  
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It is then straightforward defining the iterative process: 
 1  q    

   1m m  JH q   

By these definitions, it is: 
 

 

 

 

1

2

3 2

1 1m m m 



 

  

    

J

J J

J J J

q

Η q q

Η q Η q q

Η q Η q Η q q












 

For the above von Neumann series it can be recognised that 
    11lim m

m
where




    J JI Η q Η q     

 A simple proof of the above can be found in similarity with the 
treatment of scalar geometrical series considering that 

     1 1m m m         J J J J JI Η I Η Η q Η q Η q q  

Manipulating the RHS it can be easily found that 
 

 

1

1

1 2

1 1

m m

m m

m m

m m







 

      
      
      

   

J J J J

J J J

J J J J

J J

I Η Η q Η q Η q q

Η q Η q Η q q

Η q Η q Η q qΗ

q Η q I Η





  

and then  
     1 1m m   J JI Η I Η q  

or 
     11 1m m   J JI Η I Η q  

Since JΗ  is a convergent matrix, it follows 
    11lim m

m




  JI Η q  

implying that 
    11lim m

m
exact solution




  JI Η q    

since only for the exact solution it may be: 
 JH q   
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NOTE: 
The above arguments, together with the previously mentioned results 
on the convergence of general iterative schemes for the solution of linear 
algebraic systems, are enough for stating that the Jacobi method 
converges for diagonally dominant system matrices. 

This is also enough to state that the Jacobi method converges for 
the linear systems obtained by the common space discretisations of the 
diffusion equation. 

However, since we accepted most of the results without a rigorous 
proof, in order to better understand the underlying principles, the 
treatment of a special case will be easy and instructive. 

Case in which HJ is symmetric 

Let us consider the case in which HJ is a real and symmetric matrix. 
This is e.g. the case of the uniform property reactor with a uniform 
spatial discretisation. 

This case is particularly simple, since it is recalled that for any real 

symmetric matrix (lets’ call it A) an orthogonal matrix U  always exists 
(i.e., a matrix whose transpose is equal to the inverse matrix, 1T U U ) 
such that 

 1 2, ,..., ndiag   AU U  

As a consequence, it can be inferred that: 

 the columns of U are eigenvectors of A, corresponding to the 
eigenvalues i ; 

 these eigenvectors represent an orthonormal basis of n . 

Such an orthonormal basis will be identified in the following as 

1 2, , ..., n    

With the above assumptions, the following can be shown. 

Theorem 1. Necessary and sufficient condition for convergence of 
the Jacobi method is that   1 JH  

Dem.: Defining the error vector as  
   m m     

it is (see above) 
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   1 1m m  JH   

If JH  is symmetric, its eigenvalues generate all n .  
Therefore 

   1 1

1

n

h h
h

c


   

It follows that 

       1 1 1 1

1 1 1

n n n
m m m m

h h h h h h h
h h h

c c c 

  

 
   

 
  J JH H     

For any arbitrary set of 
 1
hc  it is therefore  1lim 0m

m




  if and only if 

1 h  for any h, i.e., if and only if   1 JH . 

NOTE: 

Speaking in gross intuitive terms, the above means that the requirement 

  1 JH  fulfils the request that JH  is an operator that contracts any 
vector to which it is applied; in particular it contracts the error vector. 

Summarising, it is: 

The strong (or strict) diagonal dominance of A 

is a sufficient condition for the convergence of the Jacobi method. 

 

It can be also shown that: 

The weak diagonal dominance  
and the irreducibility of the matrix A  

are sufficient conditions for the Jacobi method convergence 

Before commenting this result, it is recalled that: 

Def.: A matrix is said weakly diagonally dominant if ii
ij

ji aa
j ,, 


, but at 

least for a single value of r  it is rr
rj

jr aa
j ,, 


. 

Def.: A nn matrix is said to be reducible if and only if a permutation 
matrix P exists (i.e., a matrix that can be obtained by the identity matrix 
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by permutation of the columns) such that TP AP  is block triangular (or 
block diagonal as a special case). 

Def.: An irreducible matrix is not reducible. 

NOTE: 

Let us comment this results on an intuitive physico-numerical 
basis. A reducible matrix is such that: 

11

21 22

31 32 33

1 2 3

ˆ 0 0 0

ˆ ˆ 0 0

ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ

T

k k k kk

 
 
 
   
 
 
  

A

A A

P AP A A A

A A A A





    


  

11

22

33

ˆ 0 0 0

ˆ0 0 0

ˆ0 0 0

ˆ0 0 0

T

kk

 
 
 
   
 
 
  

A

A

P AP A

A





    


 

  Block triangular   Block diagonal 

 The condition of irreducibility is also expressed in terms of 
the directed graph of the matrix is strictly connected.  

The graph is a geometrical figure (that in our purposes can 
be well represented by the discretisation lattice), where edges or 

arcs join the point Pr to point Ps if 0rsa . A 
graph is strictly connected if for any couple Pi 
and Pj of points there exists an oriented path 
leading from Pi to Pj. 

For instance, in the figure it is possible to 
join P1 to P6 through the arcs P1→P2, P2→P5 
and P5→P6 since it is 012 a , 025 a  and 

056 a . Considering the system matrices 
obtained by the discretization of diffusion 

problems it can be understood that this is true for any other couple 
of points, since the discretised leakage terms always join a point to 
2, 4 or 6 other points making a strictly connected chain of paths. 
Therefore, the graph is strictly coupled and the matrix irreducible. 

 

1 2 3 

4 5 6 

7 8 9 
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Unfolding the mathematical jargon for our purposes 
Let us now unfold the numerical jargon, to draw meaningful 
conclusions in our specific case: 
 the operation TP AP  has the result of a renumbering of the 

discretization nodes; 
 whenever this renumbering would lead to a block-triangular or block-

diagonal (for a symmetric case) system matrix, regions of the reactor 
would be “decoupled” from each other, because the neutron flux in 
them would be independently determined; 

 this situation does not normally occur, except in cases in which 
infinitely absorbing curtains (or empty spaces with zero flux) 
purposely separate reactor regions; 

 therefore, except for these extreme cases, the system matrices involved 
in the discretization of the diffusion equation are irreducible; 

 the strict diagonal dominance of the system matrix is assured only in 
cases in which absorption cross sections are non-zero; e.g., it was 
shown that for a simple 2D problem with uniform properties it is 

2,
4

h

D
a aii     ji

h

D
a ji 

2,     

 whenever a  vanishes somewhere in the reactor, the strict diagonal 
dominance of the system matrix is lost; 

 from a physical standpoint, nodes in which absorption is zero would 
have an unbounded flux in the presence of a source, unless leakage 
towards neighbouring nodes will take place; 

 in this light, the role of irreducibility is to restore the possibility to 
calculate a limited neutron flux in poorly absorbing regions. 

 
It is interesting to consider that the concept of “nuclear reactor 
coupling” is frequently used to mean that reactor regions behave as a 
single system, with a strict interplay.  
 When a reactor is said to be “weakly coupled” it is often meant 
that the “migration length” is relatively small with respect to reactor 
size. In such a case, though different reactor regions do anyway interact 
among each other, this interaction may be weak enough to make them 
behave somehow separately: in fact, the probability of neutrons 
generated in a region to have influence on the behaviour of other 
regions may be small, though never zero. 
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 The above demonstrates how much physical and numerical 
aspects interact in determining the conditions of convergence for the 
Jacobi method. 
 
The simple idea behind the Jacobi method 
Beyond the formalism that is necessary to convince about convergence 
properties, it should be noted that the simple idea behind the Jacobi 
scheme is to solve a given linear system of equations 














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nnnnnn

nn

nn
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bxaxaxa

bxaxaxa

,22,11,

2,222,211,2

1,122,111,1


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

 

by the “strange” solution procedure 
 
 

 












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







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)(
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11,22
)1(

2

1,1
)(

,1
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22,11
)1(

1







 

in which only the i-th unknown is retained at the left hand side and all 
the others are assigned a tentative value (or a previous iteration one) at 
the right hand side. 
 The fact that such a rough procedure may lead to convergence for 
a vast class of system matrices must be regarded as a consequence of 
the fact that the iteration matrix, having a spectral radius smaller than 
unity, contacts the error made with the initial guess in further 
iterations. 

Practical implementation of the Jacobi method 

Advantage is taken from the limited number of nodes involved in 
discretised diffusion equations (5 in 2D and 7 in 3D) and the nodes are 
numbered with multiple subscripts (one for each coordinate). 

It is thus possible to define the coefficients of the equation related to the 

a given node, with reference to the neighbouring points 
1 2 3 

4 5 6 

7 8 9 

1,1 2,1 3,1 

1,2 2,2 3,2 

1,3 2,3 3,3 
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E.g., in two dimensions it is 

    jijiajijiji
y

jijiji
x

S
h

D

h

D
,,1,,1,2,1,,12

22    

that becomes 

, , 1, , 1, , , 1 , , 1 ,i j i j i j i j i j i j i j i j i j i jq           W E S N  

where 

2

, ,

2 2

2 2
x

i j i j

a
x y

D
h
D D

h h

 
  

W E   
2

, ,

2 2

2 2
y

i j i j

a
x y

D
h

D D
h h

 
  

S N  

22

,
, 22

yx
a

ji
ji

h

D

h

D

S
q


  

The iterative scheme has therefore the form 
         1
, , 1, , 1, , , 1 , , 1 ,
m m m m m

i j i j i j i j i j i j i j i j i j i jq    
       W E S N  

In the 3D case other two additional coefficients would appear (e.g., 
,i jU  e ,i jD ). 

Convergence rate 

a) If the matrix HJ has a single eigenvalue having maximum modulus, 
1 , and its eigenvectors form a complete basis, it is: 

         1 1 1 1 1
1 1 1

1 2 1

mn n
m m m m h

h h h h hm
h h

c c c
 




 

 
    

 
 JH      

therefore 
   

1

1

m m m
j C C  



  JH  

b) If B is symmetric (uniform reactor with uniform discrettzation) it 
can be shown that the eigenvalues are patterned in pairs i  and there 
are two eigenvalues having maximum modulus. Even, in this case it is 
anyway  
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            2 21 1 1 1 1 1

1 1 1

, ,
n n n

m m m m m m
h h h h h h h h

h h h

c c c    

  

    
 
        

therefore (we use the shorthand notation   
JJ HH ) 

       
2

2 2 2 2
1 1 1 12 2

2

h h h

m
hm m m

h h hm
c c c

     


 




  

     
  
  J J

JH H HJ J J

H H
H

  

or 

 1m mC  
JH  

Since after a convenient number of iterations the error decrease 
at each iteration is measured by the spectral radius, the asymptotic 
rate of convergence can be therefore defined as: 

 lnR    JH  

The number of iterations to be performed for reducing the error 
by a factor 1  can be estimated assuming that at each iteration 
the error is reduced by a factor   B  

 m JH     ln lnm  JH  

 
ln ln

ln
m

R

 
 

  
JH

 

 

In the purpose of a rapid convergence, it is therefore desirable that 
  1 JH . It must be noted that: 

 if 0 a  the degree of diagonal dominance of the system matrix is 

reduced; therefore it can be expected that   1 JH ; 

 similarly, if 0xh  and 0yh  the diagonal dominance tends to 

vanish and   1 JH ; therefore, by refining the spatial grid a 
greater detail is obtained but the convergence rate decreases 
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 Gauss-Seidel Method 

The iteration matrix of the Jacobi method, JH , is further split as 
follows: 

 JH L U  
















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
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
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







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

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
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

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it is therefore 

 JH q       L U q    

 The following iteration process is then defined 
     1 1m m m   L U q    

Written in terms of components, this relationship is 

 


   
1

1 1
, ,

1 1

1

1 1

i

i n
m m m

i i j j i j j i
j j ivalue of

at step m summation over the components of summation over the components of

alreadyupdated in step m not yet updated in step m

l u q


 

  


 

  



 

   
   

NB: The basic idea is therefore to use immediately in the calculation 
the flux values updated in the current iteration step 

 The iteration matrix can be therefore identified as follows: 
             1 11 1 1m m m m m          L U q I L U I L q      

or 

  1

GS

 H I L U  

 Under not too demanding assumptions, it can be shown that  

   2
GS  JH H  
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Therefore, the Gauss-Seidel method is expected to converge more 
rapidly than the Jacobi one, with a nearly halved number of iterations 

 

Practical implementation of the Gauss-Seidel method 

In the calculation of a new flux value, both updated and old iteration 
values are adopted 

 

 

Using a two subscript notation for this 2D example, it is: 
         1 1 1
, , 1, , 1, , , 1 , , 1 ,
m m m m m

i j i j i j i j i j i j i j i j i j i jq      
       W E S N  

 

7 8 9 

13 14 15 

19 20 21 

10 11 12 

16 17 18 

22 23 24 

1 2 3 4 5 6 

updated flux 

old flux 
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Successive OverRelaxation Method (SOR) 

The basic idea is to extrapolate the prediction obtained by the Gauss-
Seidel method, through an overrelaxation factor 1  

       1 1m m m m

GS
          

where 

         1 1m m m m

GS

        L U I q     

Therefore 

         1 1m m m m       L U I q     

or 
       1 1 1m m m          L I U q    

Writing this vector relationship by components, it is 

         
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ij

m
jji

m
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jji
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1
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1 1  

from which it can be checked that 

                GS
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
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Using the two subscripts notation for a 2D case, it is 
             1 1 1
, , , 1, , , 1 , 1, , , 1 ,1m m m m m m

i j i j i j i j i j i j i j i j i j i j i jq             
         W S E N

      
GS

m
ji

m
ji

m
ji ,

1
,,     

 The numbering of nodes, which is irrelevant in the Jacobi method, 
is anyway important for the Gauss-Seidel and the SOR ones 
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For both the Gauss-Seidel and the SOR method it is possible to adopt a 
“checkerboard” variant; two steps are performed at each iteration: 

1) fluxes are updated in staggered nodes on the basis of old fluxes 
only 

 

 
         1
, , 1, , 1, , , 1 , , 1 ,
m m m m m

i j i j i j i j i j i j i j i j i j i jq    
       W E S N  

 

2) then, fluxes are updated in the remaining nodes on the basis of 
updated fluxes only 

 
         1 1 1 1 1
, , 1, , 1, , , 1 , , 1 ,
m m m m m

i j i j i j i j i j i j i j i j i j i jq        
       W E S N  

 

A greater symmetry is adopted avoiding the generation of spurious 
asymmetric components in the error 

updated flux 

old flux 

7 8 9 

13 14 15 

19 20 21 

10 11 12 

16 17 18 

22 23 24 

1 2 3 4 5 6 

updated flux 

old flux 

7 8 9 

13 14 15 

19 20 21 

10 11 12 

16 17 18 

22 23 24 

1 2 3 4 5 6 
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The iteration matrix in SOR is found considering that 
         1 11 1m m             I L I U I L q   

It can be found that the minimum of the spectral radius of the iteration 
matrix in SOR is found when: 

 2

2

1 1
opt 


 

  JH
  (where 21  opt ) 

 In order to calculate opt  it is necessary to know   JH ; therefore, 

it is advisable to perform a number of iterations with the Jacobi method 

to estimate its asymptotical convergence rate. For a symmetric JH , it is 

,
1

n

h h h j h j
h

q with 


  q     

then 

 2 2 2

1 1 1

, ,
n n n

m m m m m m
h h h h h h h h

h h h

q q q  
  

 
   

 
  J J JH q H q H q    













 


n

m
H

m
h

h

n

h
m

H

n
m

hh

n
m

Hh

Bh JBh

J

BhBh

J
qqqq

 



2

2
2222222

 

As a consequence: 
2 2

2 2
21 2 2

2 2
2 2

2 2

2

lim lim h B h B

h B h B

mn n
h

h hm m

mn nm mm
h

h h m

q q

q q

   

   




 





 
 

 

 

 
 

   
 
  

 

 
J

J

J

J H
B H

J

H

H q

H q
 

 It is: 

  1
11

2
2






J

opt

H

SOR


   
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Line OverRelaxation Method (LOR) 

 Since the three-diagonal matrices are efficiently dealt with by the 
Thomas’ algorithm, it is tried to make use of the three-point structure 
existing in each direction in 2D and 3D problems 

 For instance, in the case of the 9 node grid in 
the figure, the obtained banded matrix can be 
interpreted as a block matrix whose diagonal 
blocks are tridiagonal 





















































































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




























9

8

7

6
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4

3

2

1

9

8

7

6

5

4

3

2

1

999896

89888785

787774

69666563

5856555452

47454441

363332

25232221

141211

000000

00000

000000

00000

0000

00000

000000

00000

000000

S

S

S

S

S

S

S

S

S

aaa

aaaa

aaa

aaaa

aaaaa

aaaa

aaa

aaaa

aaa

11 12 1 1

21 22 23 2 2

332 33 3

ˆ ˆ ˆ0 ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ0

                             

A A s

A A A s

sA A







 

It should be noted that blocks ,
ˆ

i iA  contain the coefficients of fluxes on a 
same line and, therefore, they are three-diagonal as in 1D cases 

On the other hand, blocks , 1
ˆ

i iA  e , 1
ˆ

i iA  contain the coefficients of the 
fluxes in the lines below and above the one in consideration 

 The idea is then pursued to write the system in the form 

, 1 1 , , 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆi i i i i i i i i i

threediagonal

     A A A s    

applying a Gauss-Seidel-like strategy 


     1 1

, , 1 1 , 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ

line to be calculated line already calculated line not yet calculated

m m m
i i i i i i i i i i

tridiagonal

 
     A s A A

  
     

Introducing also an overrelaxation, the LOR scheme is obtained 


         1 1

, , 1 1 , , 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 1m m m m

i i i i i i i i i i i i i

tri diagonal

    
       A s A A A      

1 2 3 

4 5 6 

7 8 9 
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It is therefore possible to apply the direct Thomas algorithm on each 
line covering “line-by-line” the whole domain 

 

 With reference to the more relevant example in the above figure, 
adopting the two subscript notation, it is: 

         1 1 1 1
, 1, , , , 1, , , 1 , , 1 ,

m m m m m
i j i j i j i j i j i j i j i j i j i j i j

three point structure

q          
        W O E S N

        , 1, , , , 1,1 m m m
i j i j i j i j i j i j-      W O E  

where the right hand side exhibit a clear three-point structure 

 Though the technique can be applied preferentially in a single 
direction, it is more convenient to alternate the directions, 
pointing out the three-point structure alternatively in each one of 
them 

         1 1 1 1
, , 1 , , , , 1 , 1, , 1, ,

m m m m m
i j i j i j i j i j i j i j i j i j i j i j

three point structure

q          
        S O N W E

        , 1, , , , 1,1 m m m
i j i j i j i j i j i j-      S O N  

 

 

 The following ADI method makes use of a similar technique 

updated flux 

old flux 

7 8 9 

13 14 15 

19 20 21 

10 11 12 

16 17 18 

22 23 24 

1 2 3 4 5 6 
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Alternating Direction Implicit Method (ADI) 

 The method is due to Peaceman and Rachford (1955) and is based on 
the decomposition of matrix A in the form 

  
" " " "horizontal coefficients coefficientsvertical coefficients

of the discretized Laplacian related to absorptionof the discretized Laplacian

  A H V   

For a uniform property case, it is 

1, , 1, , 1 , , 1 , , ,2 2 2 2 2 2

2 2
i j i j i j i j i j i j a ij i j i j

x x x y y y

D D D D D D
S

h h h h h h
      

 

           

 
H V

 
 

 For purpose of illustration, it can be argued that the above splitting 
of matrix a is used to firstly obtain equivalent forms of the linear 
system 

 a first form is the following: 

  1 1

2 2

                  
A s H V Σ s H Σ V Σ s       

1 1 1 1

2 2 2 2m m                              
H Σ s V Σ H Σ I s V Σ I       

 or  
1 1

2 2m m             
H Σ I I V Σ s    

 a second form is trivially obtained by exchanging the roles of H 
and V in the former one: 

1 1

2 2m m             
V Σ I I H Σ s    

 In the above, m  is a forcing parameter that could be thought of as 
the introduction of some degree of inertia in the iterations; this 
aspect will appear more clearly by treating the transient version 
of the algorithm; here this will become a key aspect for achieving 
fast convergence in some cases 

 Taking profit of the three-point structure in the two directions, 
semi-iterations are performed adopting both forms: 
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   1 21 1

2 2
m m

m m

three- point structure

               
H Σ I I V Σ s


   

   1 1 21 1

2 2
m m

m m

three- point structure

                
V Σ I I H Σ s


   

 Since the matrices at the left hand side have a three-point 
structure (they are not both three-diagonal anyway), profit can be 
taken of the Thomas’ algorithm to evaluate “implicitly” each row 
or column by “alternating” the sweeping directions: hence the 
name of the method 

 It is interesting to rewrite the two semi-iterations in single step 
form 

 from the first semi-iteration it is 

   
1 1

1 2 1 1 1

2 2 2
m m

m m m  
 

                       
H Σ I I V Σ H Σ I s   

 substituting into the second and solving for  1m  it is 

   
1 1

1 1 1 1 1

2 2 2 2
m m

m m m m

source terms

   
 

                              


V Σ I I H Σ H Σ I I V Σ 
 

 The resulting iteration matrix is, therefore 
1 1

1 1 1 1

2 2 2 2m m m m m    
 

                             
J V Σ I I H Σ H Σ I I V Σ  

It can be shown that 

  1 0
m mif  J  
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 The demonstration of this result is based on the following steps: 

 it is shown that 
1

2
H Σ  and 

1

2
V Σ  are symmetric and positive 

definite (SPD), i.e., such that 0,T   A    ; as such, all their 
eigenvalues are real and positive; (3) 

 it is then shown that if 0m , any eigenvalue of 
m

J , has a 
magnitude less than unity. 

 Let us skip the demonstration and focus to understand why the 
ADI method is particularly successful for separable and nearly 
separable problems: 

 it is first recalled that for separable problems defined by the 
partial differential equation 

2 2
2
,2 2

0l kB
x y

   
  

 
 

the general solution has the form 

     , ,l k l kx y X x Y y    

 the eigenfunctions  , ,l k x y  are therefore such that  
2 2

2
,2 2

1 1
0l k

l k
l k

d X d Y
B

X dx Y dy
    

and thanks to the separability it is 
2 2

2 2
2 2

1 1
0 0l k

l k
l k

d X d Y
B B

X dx Y dy
     

 a direct consequence of the above is that  , ,l k x y  satisfy 
simultaneously the equations 

2 2
, ,2 2

2 2
, ,

1 1
0 0l k l k

l k
l k l k

B B
x y

 
 

 
   

 
 

i.e.,  , ,l k x y  is at the same time an eigenfunction of both the 
above eigenvalue equations, but with different eigenvalues; 

                                                           

(3) From the relationship 0,T   A    , assuming   as an eigenvalue of A , it follows 0T A   

0 0 0T T           . Moreover, it is recalled that the eigenvalues of a symmetric matrix are real as it is for 

any hermitian matrix. 
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 these properties are retained also by the discretised form of the 
equations, so that the matrices H and V have the same 

eigenvectors, as it is of 
1

2
H Σ  and 

1

2
V Σ , though they have 

different eigenvalues 

     , ,1
1,...,

2
k l k l

k xk n    
 

H Σ    

     , ,1
1,...,

2
k l k l

l yl n    
 

V Σ    

 Considering the well known properties of functions of matrices, it 
can be understood that the spectral radius of matrix 

m
J  is given 

by (4) (5) 

    
  ,

max 1 0
m

m k m l
m

k l
m k m l

se

   
 

   
 

  
 

J  

where 0k  e 0 l  as they are eigenvector of the symmetric 

positive defined real matrices 
1

2
H Σ  and 

1

2
V Σ . 

 In fact, the matrices 
1

2m
   
 

I H Σ  and 
1

2m
   
 

I V Σ  have still  ,k l  

as eigenvectors and the eigenvalues are km   and lm    

 As a consequence, also 
m

J  has  ,k l  as eigenvectors with the 
mentioned spectral radius. 

 In theory, for separable cases it is possible to define a very efficient 
iterative procedure: 

                                                           

(4) It is recalled that, given a function  f z  of a complex variable z having a MacLaurin series expansion  
0

n
n

n

f z a z




  

that converges for z R , the series  
0

n
n

n

f a




A A  converges if the eigenvalues of  the matrix A  have modulus less 

than R. The function is then called “well defined” (see e.g., R. Bronson, Matrix Operations, McGraw-Hill, 1989). As a 
consequence of the above, it can be easily verified that the matrix  f A  has the same eigenvectors of A  and its 

eigenvalues are  if   where 
i  are the eigenvalues of A . 

(5) Moreover, if two matrices A  and B  have the same eigenvectors with eigenvalues 
i  and 

i  respectively, also AB  

has the same eigenvectors 
i  with eigenvalues 

i i  . In fact, it is easily seen that
i i i i i i   AB A   .  
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 if p is the number of different eigenvalues k  e l , p different 

values of m , can be used in order to minimize the spectral 
radius of the overall iteration matrix 

121

...
 






 JJJJJ

ppm tot
 

that has as a spectral radius the quantity 

 
  
  

  
  lpkp

lpkp

lk

lk

lktotm 









...max
11

11

,
J  

 putting at each one of the p steps m  equal to a given k  or l
, it would be obviously   0

 totm
J  

 since determining the eigenvalues k  e l  would require a 
considerable amount of computational work, it is instead 
accepted to choose the m ’s with the criterion 

 

    
    xxx

xxx

p

p

xp 


 ...

...
maxmin

21

21

,...,, ,21
 

where (, ) contains the eigenvalues. 

 For non-separable problems, there is no rigorous theory for 
selecting the optimum forcing parameters; therefore: 

 ADI has optimum performances for separable cases (6) but it 
might be not very efficient on some non-separable cases 

 for nearly-separable cases (most of the addressed conditions) it 
is possible to evaluate the optimum values of m  referring to 
the separable case that can be considered closest to the 
addressed one, obtaining generally good performances; 

 formulations defining the m ’s are reported in relevant 
textbooks on this basis. 

 

                                                           
(6) It is remarked that in this context, by “separable” and “non-separable” problems it is simply meant that the reference 
partial differential equation problems are amenable or not to the solution by the technique of variable separation.  
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Gradient Methods 

 Considering the system  
A x s  

with A  real and symmetric, we will identify with   its exact solution.  

 It is interesting to consider different quantitative definitions of the 
error: 

      1

T TE      x x x     

      2

T TE      x s A x s A x r r  

      3

T TE    x x s A x A    

While the first and second definitions provide positive quantities 
(being scalar products of a vector by itself), the third one represents 
a quadratic form, having A  as associated matrix, and can be greater 
or less than zero. 

 Recalling that, if A is symmetric and positive definite (SPD) the 

quadratic form is by definition positive (in fact, it is T A     for any 
non-zero  ), we will assume that this is the case, taking  3E x  as a 
measure of the error. 

 It is therefore  

   3 30 0E and E   x x x   

meaning that to find the system solution 
we should minimise  3E x  

 In this purpose, geometrical arguments 
can be set up by considering that the locus 
of points at constant error  

 3 .E c o s tx  

represents a hyper-ellipsoid in n . 

 In fact, the canonical form of the 
quadratic polynomial can be found to represent an hyper-ellipsoid 
by making use of the transform 

   x U z   
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where U  is the orthogonal matrix ( T U U I  o 1T U U ) such that 

 1 2, ,...,T
ndiag    U AU   

(it always exists for symmetric matrices). The direction of the axes in 
the new reference system obtained by the transform are the 
eigenvectors of A, being an othonormal basis of n . 

It is: 

   3

TT T T TE    z A U z A U z z U AU z z z    

or 

  .... 22
22

2
113 tsoczzzE nn z  

Since the eigenvalues of any SPD matrix are positive the above 
clearly represents a hyper-ellipsoid having axes ii tsoca  . , which 
are measures the error. 

The basic idea in the gradient methods is therefore to search for 
better approximations of the solutions moving to hyper-ellipsoid with 
smaller and smaller axes. 

 

Method of the “steepest descent” 

 

The above idea is translated into mathematical formalism by the 
relationship  

       1m m m m  x x p  

where  mx  represents the old approximation (on the old hyper-

ellipsoid),  mp  represents a vector identifying the direction of 

movement and  m  measures the distance along  mp  necessary to reach 
 1mx  

It must be understood that  

o the choice of  mp  must be effective enough in order to move 
inwards the hyper-ellipsoid surface towards its centre 
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o computing  mp  as a diametral direction would be too costly from 
the computational point of view: simpler recipes must be therefore 
identified. 

In the “steepest descent” method, the adopted recipe is to move 
inwards from the hyper-ellipsoid along the vector normal to the tangent 
plane, i.e. along the “gradient” of E3 (hence, the name) 

Therefore, in this case it is:  
 mp = vector normal to the surface in  mx  

 m = scalar chosen as to minimise   1
3

mE x  

In the canonical reference frame, it is conveniently assumed 
   m m  p z  

since the gradient is immediately found to be  

    3
32 m m

i i z
i

E
z grad E

z



  


z z  

However, since it is necessary to operate in the original reference 
frame it is needed to back-transform this result 

         m m m m mT    p Up U z UU AU z A   
      m m m     A x A x s r  

 
 m  is then chosen on the basis of the mentioned minimum 

criterion, thus obtaining 

  03 



m

E
     

 
   

   

m mT
m

m mT
  

r r

r Ar
 

 The final iterative scheme is therefore 

   
   

   
   1 0

0

m mT
m m m

m mT

   
r r

x x r x x
r Ar

 

 It should be noted that: 

 if     00  m
i

m
i pz , i.e., whenever a component of the solution 

is exact, this advantage is preserved since the subsequent 
approximations will keep on the 0iz   plane; 



NMNR-Unit-1 – Eigenvalue Problems and Solution Strategies – Inner Iterations 55 

 if the hyper-ellispoid is a solid of revolution along some axis (i.e., 
it is round, jiji  , ), convergence is quicker; as a limiting 

case, if the hyper-ellipsoid is an hyper-sphere, convergence is 
achieved in a single iteration. 

 An example related to n=2 is shown in the figure below: 
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Coniugate Gradient Method 

 

 It should be considered a direct method since, in principle, it 
allows to obtain the solution in n iterations (n is the dimension of 
the system matrix) 

 Actually, as for any other direct method, round-off errors may 
accumulate, reducing the method to a semi-iterative one. 

 The adopted formulations are, in this case 
       

       

       

1

1 1

1

m m m m

m m m m

m m m m









 



 

 

 

x x p

p r p

r r Ap
 

where    0 0p r  and 
 m  and 

 m  are given by 

 
   

   

m mT
m

m mT
 

p r

p A p
  

 
   

   

1m mT
m

m mT




 
r Ap

p A p
 

 As it can be noted, these definitions, whose demonstration we omit, 
though different from the ones of the steepest descent method, are 
anyway simple; their meaning is the following: 

 vectors  mp  constitute a set of A-orthogonal vectors (or A-
conjugate, hence the name of the method): 

     1 0 0,1,...,m kT k m  p A p     

 with such definitions, the residuals  mr , instead, turn out to be 
orthogonal among each other: 

     1 0 0,1,...,m kT k m  r r     

Since the n -th residual should be orthogonal to the others,  0r ,  1r

, …,  1nr , it should be zero. 
   0n n exact solution   r x      
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In the case n=2 the relation of A-conjugation between two 
directions defines the relation existing between the direction 
of two parallel tangent lines to an ellipsis and its diameter 
passing through the points of tangency: this illustrates the 
effectiveness of the method in finding the exact solution (i.e., 
the centre). 

Modern versions of the conjugate gradient method can be applied 
to matrices the do not require to be SPD; the bi-conjugate gradient 
method is one such algorithm. 
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Sources and Suggested Readings 

In English language 

R. S. Varga, Matrix Iterative Analysis, Prentice Hall, 1962. 

A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, 
Springer, 2007. 

R. Bronson, Matrix Operations, McGraw-Hill, 1989. 

 

In Italian language 

G. Ghelardoni, P. Marzulli, Argomenti di Analisi Numerica, ETS 
Università, Pisa, 1980. 

G. Gambolati, Elementi di Calcolo Numerico, Edizioni Libreria 
Cortina, Padova. 

 

Web references 
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