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MULTIGROUP NEUTRON KINETICS
EQUATIONS

e We consider the G energy group neutron Kkinetic equations with
N, delayed neutron groups:

1 90,
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The initial and boundary conditions can be, e.g.:
0,(F.1)=0 c,(r.t)=0 (Feav)

0,(7.0)=03(7) €,(r.0)=cq(F) (Fev)
e With respect to the eigenvalue calculations, it is now necessary to
discretise also with respect to time. In this purpose we can write the
equations in the following general form

oy
“T_A
ot v

Time discretisation gives:
¢ explicit scheme

n+l _ on
v v At‘l’ =Avy" = ¢y =(I+ArA)y”
¢ implicit scheme
ntl o on
\II At‘l’ :A\I’n+l = (I_AtA)\I’nH:yﬂ

¢ weighted scheme (0<0<1)

n+tl n
%:A[@—@)w" +oy™] = (I-6ArA)y™ =[1+(1-0)ArA g’

These relationships must be spatially discretised discussing some
of the properties of the obtained schemes
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CONSISTENCY, STABILITY AND CONVERGENCE
OF FINITE DIFFERENCE METHOS

Space and time discretisation

While discretising a partial differential equation, we substitute to a
given differential problem a corresponding problem expressed in
terms of finite differences (no matter the adopted discretisation
scheme, i.e., finite differences, finite volumes or finite elements):

PDE — FDE
(PDE = Partial Differential Equation; FDE = Finite Difference Equations)

It is then necessary to assure that the obtained numerical scheme
possesses some fundamental properties making it mathematically
sound and useful in practice.

For instance, we saw that the neutron Kkinetic equations,
discretised with respect to energy, have the general form:

where A e Y in our case represent a linear (matrix) differential

operator and a vector function. We will omit their explicit indication
in that form, for the sake of generality.

If we proceed by discretising with respect to time and to each
space coordinate, we have:

where B; e B are finite difference linear operators depending, among

the other variables, on the adopted space and time increments
B, = By(At,Ax,Ay,Az,...) B, = B,(At,Ax, Ay, Az,...).

We have to assume that the inverse operator of B; does exist: if not it

would be impossible to advance the calculation; so, any reasonable
scheme should satisfy this condition. In such a case, it is

Wn+1 — Bl—lBO l//n — Cl//n
where we defined C = B]'B,= C(At,Ax,Ay,Az,...).
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Though this is not strictly mandatory, it is customary in some
treatments (see e.g., Richtmyer and Morton, 1967) to assume that each
space increments are related to the time increments in order to

establish the speed at which they will vanish for vanishing Af :
Av=g (A1) Ay=g (A1) Az=g (&)
This allows to assume that
limAr=1ims.(a)=0  ]im&y=]ims,(&1)=0

At—0 At—0 At—0 At—0
limAz=1lims.(a)=0
At—0 At—0

So, we can use the notation:
C=ClAr,g.(Ar).g,(Ar). g.(Ar))=C(At)

Convergence
Assuming to calculate the numerical solution of algebraic equations
without “round-off” errors, the discretization error at the time level n

with respect to the exact solution VY, is defined as:

" =y, —y’
The total error, instead, will include also round-off.
An approximate solution can be obviously considered reliable if
0" keeps limited and can be reduced below a selected threshold by an
appropriate choice of the increments.
Therefore, by selecting a time t at which we wish to advance the
calculation and any desired n such that nAr < t, it must be:
lim | 8" =0
At—0
where HOH is an appropriate norm operating on the functional domain

of functions y (e.g.,: .| jj\ f (x)\zdx ). This can be expressed by saying
that:

a numerical scheme is said to be “convergent”
if its solution tends to the exact solution of the differential problem
in the limit of small time and space increments

The error 8" is determined by the approximation adopted for
evaluating the differential operator (replaced by the difference
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operator), i.e. from truncation, and by the propagation of the error
affecting the data at the previous step. In fact:

§" =y - Clarh™" ' =y! — (A" + C(Aat ™ — C(Ar)y™!

or
n n n—1 n—1
O" =y —C(d)y "+ C(M)o
~ N
error due to truncation propagation of the error

at the previous time step

The partition of the contributions to errors into two terms brings to
the consideration of two properties strictly related with convergence:
® consistency, expressing at what extent the difference operator is a

reasonable approximation of the differential one
e stability, defining the necessary and/or sufficient conditions in order
to avoid excessive propagation of the
error encountered at a given
v, advancement step

v Consistency

Considering the relation

yr=C(any”

o I > it can be noted this is equivalent to
writing
vy -yt clar)-1 "
At At

where [/ is the identity operator. Comparing the above relation with
the differential equation
d
N_,

ot v

and considering that it is
n+l n
vUoy dy
At ot
it must be expected that it should be also
C(At)-1
At

In other words, we need that the assigned difference equation be
consistent with the given differential equation

per At =0

y(t) > Ay(t) per At—>0 1<t
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wlr +Ar)—y(r) C(At)_l\p(r)eaw—(t)—A\p(t) per At >0, t<t

At At ot
This can be expressed as follows:

a numerical scheme is said to be “consistent” with the assigned
differential problem if its difference equations tend to those of the
differential problem in the limit of small increments

This means:
lim FDE = PDE

At—0

(remember that we have assumed that if the time increment
vanishes, the same will be for the spatial ones).

Consistency is therefore a property pertaining to the form of the
numerical scheme.

Every method allowing transforming the differential problem
into a corresponding difference problem that is consistent with it is
said a ‘“discretization method”.

The difference TE=FDE-PDE is said truncation error. In
particular, if VY, is the exact solution of the assigned original

differential problem for some initial condition, the local truncation
error is sometimes introduced (“local TE”’) in the form

ntl . n _ ntl n
L, <Y Ve C(Ar) Ly _(8& ~ Awej - c(any!

At A ¢ ot At

~

=0

being obtained by applying the difference scheme to V.. It must be
recognized that in literature different definitions of the LTE are also
available with respect to the one preferred here.

Developing the difference equation by the use of the Taylor
expansion it is possible to obtain an expression of the truncation error
as a function of powers of the space and time increments.
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Example: The dimensionless diffusion equation

dy_v_,
Jdt  ox?
is approximated as (i indicates spatial location and n the time level)
vt vl i - 2w v
At Ax?
Considering that
n 2 2 3" 3 4. |" 4
N WO 0 A AR I R 1)
o, at| 2 e 6 ort| 24
n 2. " 2 30" 3 4., ]" 4
UV N 165 O " 53 SO I R S
B ox |, 8x2‘i 2 x> ‘l. 6 ox? ;24
it is
gty 8\|1|” 9%y’ At+83\|f‘n At)? 84\|1n (Ar)
At at\,- o> L. 2 o ‘l az“l. 24
Vi =2y + Vi _ o’y 9%yl (Ax)’ 4
Ax? x|, axt| 12
Then, substituting into the difference equation, we get:
aw” azw‘ azw‘ At 84\;!‘ . —0
al, o Tar| 2 at|, 12 7
or
oy a%y|’ )
- = O\At)+ O\Ax
at‘,- 8x2 ; ( ) ( )
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It can be noted that:

¢ the scheme is consistent, since the truncation error vanishes for
vanishing increments (even if we put Ax = r Ar)

e a first order truncation error in Ar and a second order truncation
error in Ax are obtained

e as a consequence of the truncation error, whenever finite
increments are used, the solved differential equation is no more the
original one, but it is shown to be a “modified”’ equation containing
higher order derivatives

¢ in general, for a consistent numerical scheme the truncation error
can be expressed in terms of powers of A? and space increments

n

% 2 _Z(AZ)% =o(arr )+ O(HAxl."" ] o

Putting a relation between space and time increments, it will be

n+tl n
At
Stability
In short:

a numerical scheme is said to be “stable”
if the unavoidable round of and truncation errors and the errors in the
initial data are not amplified during the calculations

Since it is
§' =yl —c(Aar)y? + c(Ar)y? — c(Ar)y® = Ar LTE, + C(Ar)8°
8% = At LTE, + C(Ar)8' = At LTE, + At C(At)LTE, + C*(Ar)3°

8" =AY C"(At)LTE; + C" (Ar)8°
i=1
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it can be noted that stability is related to the boundedness of the
difference operators C" (At) over the functional domain D v in which
they are applied

It is therefore requested that any operator C "(At) obtainied by
varying Ar in an admissible interval (O,’E) (so that nAr<t) be
uniformly bounded on D y» i.e., a real number K must exist such that

for any Y € D\lf it is
|t (ar)y| <&

where the adopted norm is the one selected to be applied in this
context.

Then, for any 7 it will be also
|c"(ans|<x]&° |

Lax’s Equivalence Theorem

Given a properly posed initial-value linear differential problem and a finite
difference approximation to it that satisfies the consistency condition,
stability is the necessary and sufficient condition for convergence

A properly posed problem has the following characteristics:
¢ its solution exists and is unique
¢ the solution depends in a continuous manner from the initial data.

Just to provide an illustration of the above concepts, we note that

8" =AY C"(At)LTE; + C" (At)8°
i=l1

and, shifting to norms, we have

ot
=1

For a stable scheme, we have

5" C"(Ar)LTE,

+ H C" (Ar)SOH

811

< AtKi\\LTEi\\+K\\ |
i=1
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If the scheme is also consistent, it is

5| <nark olar' )+ k|[8° < ik ofar' )+ k|8

where we used the relation nA7 <t. It can be therefore noted that, if
the initial error is zero

lim HS” -0

Ar—0

meaning that the scheme is also convergent.

Consistency and stability are therefore the properties that must be
possessed by a numerical scheme to be also convergent.

Checking consistency is relatively easy; for stability, instead,
specific criteria can be applied

Specific forms of stability criteria

Let us consider a difference operator having the form
v =Ty" +c
with T a matrix and vy e ¢ vectors.
In the absence of initial and round-off errors it is:
y' =Ty’ +c vy =Ty' +c=Ty’+Tec+c
' =Ty’ +T" "c+..+Tc+c

On the contrary, if the initial vector y° is perturbed by a vector

5" itis
v +8" =T (' +8°)+ T"'c+...+ Te+c
and then
5 = T8
Applying the norms, it is:
¥ = |8 <[ T

On the basis of this formulation we can apply two different stability
criteria.
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e Stability according to Lax and Richtmyer

Assigning a relation between A7 and spatial increments, we require

that at a given time level 7 = nAt there exist a positive number M
independent from n, At e and from spatial increments, such that

HT” <M

In order to have this criterion satisfied for any n, it must be:
|Tj<1

However, it must be noted that if the solution of the differential
problem increases with time (e.g., a reactor with keﬁc >1) we accept

that
| T <1+ 0(aAr)
since in this “non-dissipative” problem amplification of perturbations
(as well as of the solution) does occur even in the exact solution
e Matrix Stability

In this case, we assign values of Ar and of space increments separately
and we progress in calculation advancing time (so, the dimensionality
of the problem does not increase).

It is therefore evident that, in order to get
lim$" = limT"8° =0

n—seo n—seo

with T a matrix of constant order it is:
o(T) <1
In case of an exact solution that is anyway divergent, we have
o(T) <1+0(Ar)
This criterion is similar to the previous one:
p(T) <1 instead of |T|>1

e A further definition: stability according to von Neumann

Given the case of a partial differential equation in the unknown
function \|!(x,t), we assume that the error with respect to the
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numerical solution obtained by non-perturbed previous time-step data
can be expressed in complex exponential form as:

§(xt) =y (xt) —w, (1) =8, e

Defining C (At,Ax) as the difference operator, it is:
v, (x,t+At)=C(At, Ax)y, (x.1)
W(x,t+At) = C(Ar, Ax)y(x, 1)

it is also (subtract the above relationships side by side):
8(x,z + At) = C(At, Ax)d(x, 1)

a(t=t,,, )eiﬁ(x_xmf )

aeC, feR

The ratio
S(x,z+ At)
3(x,1)
is said amplification factor and allows discussing stability.
NB: G(At, Ax) is a ratio of numbers, while C (At, Ax) is an operator

G(At,Ax)=

The stability criterion is, in particular:

G(At,Ax) = ‘eaAt <1 (von Neumann condition)

and implies discussing the real part of o as a function of /.
Note: Assuming a complex @ and a real S implies that:

¢ the evolution of the error in time is in general oscillatory
“damped” or “amplified”; as a degenerate case (Im( o )=0),
it can be simply amplified or damped; in fact:

2t JRe(@)ity) {COS [Im (@)(@-1,, )] +isin [Im (@)1=t )]}

¢ the trend of the error in space is oscillatory (unless £ =0)

eiﬁ(x—x,ef) = COS [ﬁ(x =X, )] +1isin [ﬁ(x— Xref ):l
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So, checking stability involves considering Re(a), i.e.:
Re(a) <0= stable and Re(a) >0 = unstable

as a function of an arbitrary fS. This has the meaning to
ascertain if there is any wave number [ at which the
corresponding spatial perturbation is made to grow; since
perturbations generally contain all spatial wavelengths
(i.e., all wave numbers) it must be assumed that the
system is unstable whenever there is a value of # at which
Re(a)>0.

In the case in which the exact solution of the differential equation

is increasing in time, it is only requested that

‘G(At, Ax)‘ <1+ K At (von Neumann necessary condition)

Example 1: Evaluate stability of the dimensionless diffusion equation
for the simple explicit finite difference discretisation

2 n+tl . n no_ n n
a_\|1_a \|I:O N | Vi Vi 2%2"'9//1'—1:0
ot  Jx? At Ax

In the presence of perturbations, it is

l//i”” + 5;‘”+1 -y - 5;’ B v+ o — (l//,n + 51‘”)-'_ it 5;”_1

i+1 — O
At Ax®
Subtracting the two above equations it is:
8 -8 8, 28] 48, _

At Ax?

with
6;1+1 _ SneocAt no_ Sne—iBAx 1+1 _ Sn iBAx
Therefore
o iBAX —iBAx
-1 -2+ At [( ; i
e e e :O—)eaAt:1+—[(elBAx+€ lBAX)_z]
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2At 2At

lei =‘e(w‘ =1+ cos(BAx)—1] Sl=-osl

So, stability of the explicit scheme is conditioned to the above
criterion (conditional stability).

Example 2: Evaluate stability of the dimensionless diffusion equation
for the simple implicit finite difference discretisation

v _Fv_ vy v e
ot axZ At Ax?
It is now:
§r-g s -2 es
At Ax?
where we put
5}1 — §n+le—aAt 511-;1 — §n+l€—i/)’Ax §nJ1r1 — 5.n+1€i'BAx
Then:
—aA ifAx —ifAx
l—eat_e —2+e — 0 e 14 At |:2_(ei,3Ax+e—i,BAx):|
At Ax? Ax?
Gl=le=| =11+ 22T a1l <1 ! sfied
| | = ‘6 =11+ o [ —cos(f x)} < (always satisfied)

So, implicit schemes tend to be unconditionally stable, something
that makes them preferable in cases in which an explicit scheme would
limit too much the allowable time step.

Anyway, stability is not the single consideration for selecting a
numerical scheme. Of course, stability must be assured but, beyond
that, the overall efficiency and accuracy of the calculation in a given
application are often the most important considerations.
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A FURTHER LOOK AT EXPLICIT
AND IMPLICIT TIME ADVANCEMENT SCHEMES

Let us consider for simplicity a time-dependent problem of
diffusion in a 1D absorbing layer. This problem is simpler
than the neutron Kinetics problem and is somehow similar to
the “pulsed” experiments studied in Reactor Physics.

o N

The neutron balance partial differential equation for a
homogeneous layer is:

199 _ 99 _
v ot _Dax2 =9 (1)
with the simplified boundary and initial conditions
#(0.1)=¢(a.t)=0 #(x,0)=¢,(x) (2)

By discretizing the equation only in space, with the usual finite
difference technique we get:

E%ZD%U)—M@)MZ_I(Q
v dt Ax2

This represents a problem of linear ordinary differential
equations that can be written in vector form as:

do _ _
E—A(P 0(0) =&, 3)

_E6(1) (i=L...N)
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In similarity with the scalar version of such separable variable
problem, we can calculate the exact solution of it as:

¢(r)=e" 4)

(see V.I. Arnold, Ordinary Differential Equations, MIT Press,
1995). Without going into complex mathematical details, we
can note that:

e the eigenvectors of the matrix ¢* are the same as the

eigenvectors of matrix A: let’s call them ¢, (h=I,..,N);
o the eigenvalues of the matrix ¢* will be ¢*', where 4, are
the eigenvalues of A.

For purpose of illustration of the above considerations,
let’s note that it is by definition:

l,2 o l,kAk
A __ Y A2 —
e —I+tA+2!A +... kZ::; P (5)

and then

N ., = *A*
e ¢h=¢h+tA(oh+§A ¢h+...={z 0 }oh (h=1,...,N) (6)
. k=0 .

or

iumk

o k!

. t* t
‘9, =g, +M’h¢h+aﬂhz¢h +---:[ :|¢h =e"p, (h=1...N) (7)

Now let’s assume that the matrix A has distinct
eigenvalues and that:

N
& =29, (8)
h=1
In such a case, the solution of (3) is written as:

o(r) = gy = [zcswh} = el )
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a result that is coherent with the known techniques for solving
linear Ordinary Differential Equation (ODE) systems.

It is interesting now to review the explicit, implicit and
Crank-Nicolson schemes starting from a different perspective.
Padé approximant functions are rational fractional expressions
that represent approximations of the exponential as:

o0 = 1+p,0+p,0-+...+p07
1+q,0+q,0%+. ..+ qs0°

= CS+T+1OS+T+1 + O(GS+T+2)

(10)
where the right hand side can be expressed as
1+p,0+...+p8" Pr(0)
RS,T(G) = s )
14+q0+...+qs6° Qs(6) 11)

A table of some of these Padé rational approximations can be
found in G. D. Smith, ‘“Numerical Solution of Partial
Differential Equations: Finite Difference Methods”, Oxford
Univ Press, 1986.

Principal
(S, T) Rs+(0) error term
0, 1) 1+0 10°
0,2) 1+0+30° &0°
1
1,0 e —10?
( ) 1-0 -
1430
1+30+36>
(1,2) —s —720"
3
2,0 P 193
W) 1-0+36° %0
1+36
(2,1 s 504
: 1-30+%6> =
1+360+1:60°
(2: 2) e 72065

1-16+%0>
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Focusing on the three selected approximations in the table, we
can have the following cases:

1. the explicit scheme can be considered as the consequence
of selecting the approximant (0,1)

¢n+l — eAtA(l)n ~ (I+AtA)¢n (12)
or, assuming equality,

¢n+1 _ ¢n B i
A Al

2. the implicit scheme can be considered as the consequence
of selecting the approximant (1,0)

¢n+1 — eAtAq)n ~ (I—AIA)_I ¢n (14)

or, assuming equality,

(13)

(1-an)e ' =g =+ —pg (15)

3.the Crank-Nicolson scheme can be considered as the
consequence of selecting the approximant (1,1)

¢n+1 _ eAtA¢n ~ (I_%Aj (I+%Aj¢” (16)

or, assuming equality

_ﬁ ntl _ ﬂ n ¢n+l_¢n _l n n+l
(I 2Aj¢ _(Hzqu’ = T AT an

It is therefore clear that the explicit and implicit
approximations (forward and backward time differences
respectively) have a larger truncation error with respect to the
Crank-Nicolson one (being sort of centered difference
scheme).
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In relation to stability, let’s consider the case in which all
the eigenvalues of the matrix A have a_strictly negative real
part. This is the case of a “dissipative” problem, i.e., a problem
in which the components of the initial vector die out in time.

“Matrix stability’’ will require for such a problem that the
spectral radius of the numerically discretized matrix is lower
than unity.

For the explicit scheme, this means that putting
" =(I+4rA)¢" (18)

it must be:
p(I+4A) <1 (19)

Let us call 4, the eigenvaules of A, such that Re(4,)<0. We see
that the eigenvalues of the matrix I+ 4rA are

W, =1+ A4, (20)
So, it is:
Re(u,)=1+4tRe(4,) Im (g, )= AtTm(4,) (21)
and then
] =[Re(p,)] +[m ()] =[1+aRe(2,)] +[aIm(4,)] (22)
or
| =1+24rRe(4,) + 42 [Re(4,)] + 4 [1m(4,) ]

=1+24rRe(4,)+ 4 |4, @3)

So, the condition
| <1 Vh=1,..,N (24)

can be satisfied conditionally , i.e., if:
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[ <1=1+24rRe(4,)+ 4 |4, <1
= 24tRe(4,)+ 4 |4,[ <0
= 2Re(4,)+ 4|4, <0

2Re(4,)
4.

(25)

= Ar < —

The explicit scheme is therefore only “conditionally
stable”.

For the implicit scheme, instead, it is:

(I-2A)¢™ =0 = 0" =(1-4A) ¢ (26)
requiring that
p|(1-aa)" <1 27)
or
1
|ﬂh|=1 s < (h=1,...,N) (28)

With a development similar to the one made for the
explicit case, we have that

| 1|2 =[1- a4, =[1- ARe(4,)] +[ AIm(4,)]
M,
=1-24rRe(4,)+ 4*[Re(4,) ] + 4 [Im(4,)] >1 (as Re(4,)<0)
(29)
So, the implicit scheme is unconditionally stable.
In the Crank-Nicolson scheme, we have:
[y At - LA
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and

= 1+4, 402 _[1+4, 4/2]
=4, 2] -2, a2
~ [1+Re(2,)4t/2] +[Im(2,) /2] (31)

. ~<1 (asRe(4,)<0)
[1-Re(4,)4t/2] +[Im(4,) A4t/2]

leading to an unconditionally stable scheme as well.
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APPLICATION:

1D TRANSIENT DIFFUSION
IN AN ABSORBING LAYER

. Physical problem

Transient evolution of neutron flux in an absorbing layer,
with zero flux conditions at the boundaries, starting from
an initial flat distribution (with or without localized
sources)

O

« Mathematical formulation:

100 . 02¢
vot-Dox2-Za0+S

¢(0,t) = ¢(a,t) =0 o(x,0) =1
. Parameter values:

>, =0.08 cm-1 D=04cm
v=22x105cm/s a=10cm

NMNR-Unit-4 — Problems of Dynamics of Fission Reactors 23




. Numerical formulation:

\ Ax2

01 =20 +O0iy o
+ (1-00) [D A2 - Za §; 1S

i=1,..,N) ; (m=0,1,..)

Pp=0nyy =0 (m=0,1,.0; =1  (i=1,..,N)

It is:
+ o =0: explicit scheme
o« 0 =0.5: Crank-Nicolson scheme

+ o =1:implicit scheme

Putting:
AtD 2D
ai=Ci=-a‘2T b—1+(X,VAt[A2 ZaJ
Ope1 -2 Of + O
di=¢;’+(1-a)vAt[ 41 o s on [+ VALS;
It is:
a0 +bior o = d; (i=1,..N)

We put: N=39 = Ax=0.25cm
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In the case of the explicit scheme without source, it is:

10000 [ ona-20+ o ]
v At [ AX2 " Za O

By applying the von Neumann stability analysis, we find:

18n+1 5:1 5 +1° 25 511 n
v At D Ax2 "Za d;

where the usual substitutions give:

leocAt_l[ PAX 5 -iBAX ]
v at D AX2 " Za

. eIBAX 24 e-lBAX

2¢0s(BAx) - 2
Ax2

1-
=1-[ 2D VAt C—ZSX(;AM + 5, VAtJ

Obtaining the magnitude of the LHS being less than one we
need that

AL =1+[ D i ZaJvAt

1-cos(BAx)
Ax2

Being 0 < 1-cos(BAx) < 2 the most limiting condition is

0<{2DvAt +):avAtJ<2

2
[ZD VAtp+ZaVAt <2

2Ax2
4vD + vX, Ax2

or At <
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Similar conclusions can be obtained by proving that the
eigenvectors of the system matrix are

km’Ax}

N

a

¢, = {Ck sin

i=1

and the corresponding eigenvalues are

A, =vZE +vD 22{1—003(](7[4”)} (k=1,...,N) .
Ax a ’

imposing the matrix stability criterion
2Re(4,)

At < —
4.

the same conclusion obtained above are achieved.
With the adopted parameters values it is:

2Ax° 2%(0.25)

< ~ = - - ~=~3.54x107s
4vD+vE Ax~ 4x2.2x10°x0.4+2.2%x10"x0.8%(0.25)

At

So, it can be expected that, with a larger time step, the
explicit scheme will be unstable. The implicit and Crank-
Nicolson ones are instead stable.
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FORTRAN PROGRAM

e c
c c
c 1D Trasient Neutron diffusion with sources c
c Program set up for teaching purposes only c
c W. Ambrosini - Universita di Pisa c
c c
e c

program nonsta
implicit double precision (a-h,o-z)
character*80 riga

c
parameter (m = 50)
dimension phi(0:m+1),x(0:m+1),xsour (10),sour(10),isour (10)
dimension a(m),b(m),c(m),d(m),v(m),alef (m),bet (m)
c
open (unit=5,file="'nonsta.dat"')
open (unit=6,file="'nonsta.txt')
c
read (5,100) riga
read (5,*) aleng,diff,sigma,vel,n
c
read (5,100) riga
read (5,*) dt,tend,alpha
c
read (5,100) riga
read (5,*) nsour
c
read (5,100) riga
c
do 5 is = 1,nsour
read (5,*) xsour(is),sour(is)
5 continue
c
read (5,100) riga
read (5,*) xbar,sigbar
c
npl = n + 1
dx = aleng / dfloat (npl)
cmpalp = 1.d00 - alpha
veldt = vel * dt
sigdt = sigma * dt
dx2 = dx * dx
c
phi(0) = 0.d00
phi(npl) = 0.d400
x(0) = 0.d00
x(npl) = aleng
c
do 10 1 = 1,n
c
phi(i) = 1.d00
x (1) = dx * dfloat (i)
c
halfdx = 0.5d00 * dx
c
do j = 1,nsour
if (dabs(xsour(j)-x(i)).le.halfdx) isour(j) = 1i
enddo
c
if (dabs (xbar-x(i)).le.halfdx) ibar = i
c
auxsig = 0.d00
if(i.eg.ibar) auxsig = sigbar
c
a(i) = - veldt * alpha * diff / dx2
b(i) = 1.d00 + veldt * alpha * ( 2.d00 * diff / dx2
E + sigma + auxsig )
c(i) = a(i)
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10 continue

c
C Loop on time advancement
c
time = 0.d00
do 50 it = 1,5000000
time = time + dt
c
do 20 1 = 1,n
iml =i - 1
ipl =1 + 1
d2phi = phi(ipl) - 2.d00 * phi(i) + phi(iml)
C
auxsig = 0.d00
if(i.eqg.ibar) auxsig = sigbar
d(i) = phi(i) + veldt * cmpalp * ( diff * d2phi / dx2
@ - ( sigma + auxsig ) * phi(i) )
c
do j = 1,nsour
if(i.eg.isour(j)) d(i) = d(i) + veldt * sour(j)
enddo
c
20 continue
c
call tdma (a,b,c,d,v,alef,bet,n,m)
c
phimax = 0.d00
do 30 i = 0,npl
if((i.ne.0).and.(i.ne.npl)) phi(i) = v (1)
write(6,110) time,x(1i),phi(1)
if (phimax.lt.dabs (phi(i))) phimax = phi (i)
30 continue
if((time.ge.tend) .or. (phimax.gt.10.d00)) goto 60
c
50 continue
60 continue
c

stop
100 format (a80)
110 format (3 (1lx,el4d4.7))

end
O
c
c TDMA Algorithm
c
O

subroutine tdma (a,b,c,d,v,alef,bet,n,1d)
implicit double precision (a-h,o-z)
dimension a(ld),b(ld),c(1d),d(1d),v(1ld),alef (1d),bet (1d)
ub=1.d00/b (1)
alef (1)=c(1l)*ub
bet (1)=d (1) *ub
do 10 i=2,n
1=i-1
gz=b(i)-a(i)*alef (1)
ugz=1.d00/qgz
alef (i)=c (i) *uqgz
10 bet(i)=(d(i)-a(i) *bet (1)) *uqgz
nml=n-1
v (n)=bet (n)
do 20 i=1,nml
ii=n-i
1=1ii+1
20 v(ii)=bet(ii)-alef (ii)*v (1)
return
end
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d MATLAB file to visualize the results.

1€

Make use of the suppl

INPUT DECK

VEL

2.2e5
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DIFF
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a-x X ,
0 = sinh sinh—, 0<x<x<a
D nn? L
L

Expected results:
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STIFFNESS OF NEUTRON KINETICS EQUATIONS

Let us consider a differential problem defined as

and let us consider a “fixed point”, i.e., a vector that satisfies
the steady-state condition:

F(y,)=0
Around that point, the problem can be linearized as follows:

d OF
— (o +y,)=F(Sy+y,)=F(y,)+—
0

o
dt _ %174 v

Yo

. . oF| . ..
where sy is a perturbation vector and v indicates a

Yo
Jacobian matrix; we write:

Assuming that the eigenvalues, 4, (2=1....,N) of the Jacobian
matrix have negative real part

Re(4,)<0

the problem is said “stiff’ if the (negative) real part of the
eigenvalues spans over a wide interval, so that the ratio

B m?x{‘Re(&l)}
" min{|Re(4, )|}

is large.

In other words, the system contains time constants that are
largely different, so that fulfilling a criterion for stability of an
explicit numerical scheme will result particularly limiting as
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the “shortest” time constant will be the most constraining,
even if we are interested at the transient progression over
larger time scales.

Neutron Kinetics equations have a “stiff”’ character, since
the time constants that come into play are the ‘“prompt
neutron life time”, with can be very short (10~ — 107 s), and
the delayed neutron precursor lifetimes, which can range up
to several tens of seconds.

As in many other “stiff”’ problems, this obliges to discard
explicit discretisations, because they would lead to the use of
very small time-steps. On the other hand, implicit
discretisations could be heavy from a computational point of
view, proposing again the scheme of ‘“inner” and ‘‘outer”
iterations also in transient analyses. In fact:

® inner iterations are necessary to advance each time step
by any numerical scheme by the solution of linear

systems:
A Y, A
"=l I-=—A| |[I+—A |¢"
o=(1-5a) (154

® outer iterations are actually the replacement of the old
with the new vector.
So, using totally implicit schemes may be too limiting in
terms of efficiency and “‘partially implicit ones” could be more
conveniently used.

In the following we will see some examples of ADI, ADE,
and ADE-ADI methods.
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Alternating Direction Implicit Scheme (ADI)

Let us consider the problem

dd
A
6(0) =4,

and let’s divide the matrix A into the x and y contributions of
the discretized Laplace operator plus absorption:

A:X+Y+Z:(X+%Zj+(Y+%Z):XI+Y1

VT Vo

X, Y,
Let us also assume that the matrices X, and Y, commute:
X1Y1 = Y1X1

The time advancement operator for a time step 47 can be
written as follows:

diy Ay Ay 4

-1 -1
I—%le (1+%XJ([—%YI I+%Y1

-1 -1
= I—%Ylj (1+%le(l—%xl I+%Y1

The last passage was possible since the matrices commute.
Using this (Crank-Nicolson) approximation for the
exponential is equivalent to a two-step advancement scheme

s At - At n
) l”:(1——2 le (1+—2 Yqu)

. A (. A .
o 1=(1—7Y1] (1+7X1j¢ vz
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or
( At - At ;
(1__2 leq) /2 :(I—i——2 Yqu)
<

At . At .
k([—;Yqu) 1:(I+7le¢ vz

where it is noted that the two matrices in the LHS have a three
point structure, that can be treated by the Thomas algorithm
(TDMA) in similarity with LOR and ADI techniques for

steady-state problems.

It is interesting to see that this is equivalent to write

n+l/2 _ 4n
q) At/zq) :X1¢n+1/2+Yl¢n

0" — ¢ ntl s
= +X
At/ 2 @ @

In the first step, the unknown vector components, ¢"*"*, are

“in the lines” and in the second step the unknowns ¢""' are “in
the columns”.

In fact, in double index notation for the simple case of the
finite difference method with equally spaced nodes it is:

10" =¢" D on (2D Z ) p D yup D 2D X D

—;z—(p’”/ - =4 ¢.”T/ + ="V +—=@" . |+ P+
2 Ti+l, 2 i, 2 7i-l, 2 7i,j+1 2 i, 2 7i,j-1

v o 42 h; ! h; 2 ! h; ! h; ! h; 2 ! h; !

2
R2

1 =" b . (2D E) 0 D s D p (2D Z v D
—— L =—g" - LT+ =P =P | ——+ == |+ 9"

2 i, j+ i, 2 7, 2 i+l 2 i, 2 =l
v A2 B2 ottt g o )t
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Alternating Direction Explicit Scheme (ADE)

In this case, it is chosen to evaluate the ‘“already known
components” at the new time level and the others at the old
time level:

n+l/2 _ 4n
l¢i,j ¢i,j :22 Z_l . 2D Eu ¢.’1T1/2+2¢4’?1—1/~2 +2¢-ﬂ.+1 2D Eu ¢‘n4.-1/2+2¢ln-f-_1/12
v A2 h; h2 2 ) hf l’j hf " h2 2 hf b

l ¢l"71 ¢”+1/2 _ ¢n+l/2 2_D £ ¢n+l ¢n+l
v A2 el 2 ) h

?%“ 2

n+1/2 (2_1) Z j¢ln+l ¢ln-il-lj
It can be noted that the formulation is completely explicit,
though it results in a sort of Crank-Nicolson scheme. The

value of the fluxes are ‘“explicitly” evaluated at their most
recent value.

ADE-ADI
1 ¢:+1/2 _¢l),l D 1+ 2D Z‘a 1+ D n+ D n 2D Z‘ﬂ n D "
ST A Ot | Gt A e (1 a) d | S S
D n 2D Z n+ D n+
+?¢i,j+l {hz 2 ]Q,/l/z‘l‘?ﬁ,j_l/lz
y y
1 ¢tn+1 _¢tn+1/2 D n+l 2D Z n+l D n+l D n+1/2 2D 2 n+1/2 D n+1/2
;—jAt/2j =« h_)z,([ji"f+1 h2 —t— > 9. +h_}2, -1 (1 a) h2¢"+1 7+ ) s +h_)2<¢iaf—1
D 2D L, | . D .
+?¢i+l,1£'2 [hz 2 ]Q fl +? 1—1,1j

As it can be noted, both the characteristics of ADI (implicit
evaluation along a line/column) and ADE (explicit evaluation
of the fluxes at their most recent values) appear in this mixed
algorithm
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AN EXAMPLE OF APPLICATION
TO 1D NEUTRON KINETICS
OF COARSE-MESH SCHEMES

MODICO

MOnodimensional D¥namics COarse-mesh

P. Camiciola, D. Cundari, B. Montagnini: "A Coarse-Mesh Method
for 1-D Reactor Kinetics®, .dnn Mud Fnergy, 13,11, pp.629-636
(1986) ‘
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Multi-group 1D Kinetics Equations

A ’9¢ = C 7\3 0 _)'::‘}Q'Da+£
G4 e TRET 4%

f=4

: S .
2Cr . >rC: + /3‘__ Z \‘VZ;:)
(Bt I 9=

s 2.3
Bi0,8) = §HHE) = 0

A S

Lot = c (tt)=0

S
<
e
1
)
|
-
0 ass
| il
1y
ke N

V= d[ag[ g G] ID=&bg[’D4

c,z,c

b (=.€) 4 =
) i (1,6): . .
pr2)=| . EBE [ R J
gl Y (26

%, &ag[” z] A =dagld,

0 0 v v
2442 0 SN
T
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g

)6' CVZf ’KF (V 21-‘)
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COMPACT FORM OF THE
KINETICS EQUATIONS

o

Ve e

(() Hi + &,

\,L r
/u) ‘u:‘

/

Q)
D~

;;I 'Q)

(2a)

s
b
l‘

x

oy
(5 o

L1+ Bod - Ac¢ (25)

NE =
where

y o 5 . B

dependent on time and space in general
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The assumption is made of a linear variation in
time of flux and diffusion coefficients

| |
Benatd 5"
SR e
‘Dqlzlt) » Deé? & )+ [:D CE’ t’)‘lﬁ)"D(Z tm)] At
~ L
=Diz) + [D¥=z)-D(2)] =%
Matrix form % : : & .
‘TD/z t\ = D/¥) =+ r?ﬁ/g\= 773/"._-3',7 Mo
&/ ([~ v/ = < J L.u.Jb o T 3 Ab_
m M4 m ' E-E.
Pt = p()+ [d(2)- P (@] -

The precursor concentrations are integrated directly

- 6‘—:. )A C;,)A ;
£t ¢ (2)4 fe BEt)d =6)4E¢

Ippross. lineare

il €)

With the assumption of the linear variation of flux and the other
quantities, a “TIME INTEGRATED FORMULATION” is obtained

m+
m+

w\«
'-olN

m e { "h ' 2 m+4,
i g e
m+‘§
=  matrice glg_'ta da una espressions complmta in cui figurano
m M
. EE Vv,V BB I A
= matriceanaloga "

)

N 3

2. TAT P M 3
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o, (/. /L\
TIME INTEGRATED FORM OF KINETICS EQUATION

Complex analytical formulation for the precursor concentration

e P (&M‘)Baﬁ (%M%TB@ B
H(P'ADB & (4b)
: L -27 -AEA
(Pot A= 2 A [T+ 2N 25 A0 e

(AE)* T

Space discretization by a piecewise cubic polynomial

AZ S

\ f [ ! Il 3 =,
T U < 3 T >

e e e e e 1

P
—
-ty

0 < 4 - Zid N
s Y R
P ¥ #4

3rie) - B2+ a5 + Bler ) E(5-487)

THE METHOD OF WEIGHTED RESIDUALS IS THEN APPLIED
WITH:

¢ the subdomain method

¢ the collocation method with §({-1/2)-5(¢+1/2)
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m+1 m+4 fn+4- ¢ ik 6
‘mik 4 _9d + s
g ¢5' 3 2¢° “" Z Q ' Cb 9 Three point equation in

D? =
¢ (Az:)* the interface fluxes
m ~m m = .
3 G M " m
m+d g .28 7 .52 Boar =, - )3
3 : +
- obit? ab“b{ 5‘ gb‘i - Z @,;% @59 - (ZCJ
e [A 2 L
- (az;) B
Continuity conditions at the interface
m+) m-+) -
g O 7
sl T (L+4) -5
i . %
mt b %:; JP
~~Yi gz i T
T 2eZp = “?’Elb“‘)"é
& LAl P Va2 & -
k4 e ¥ rr o 57
. 2y 27 42 Z
The final balance equations are written in terms of interfacial fluxes
m+4 mu “ me mH i

\ (Y )(pc+‘+\\<a+4¢ :-:é\-

\4\-
\*Iw
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THE COARSE-MESH
3D NEUTRON KINETICS
OF DPOL3DA

Neutron kinetics equations

1 d¢¢ AV 8 8 g s P
:g— > =V:-D*V@® ~Zl¢’ +ZZ‘\. 0]
. g'=1
G L
+(1—B)x§’,zv2;cp“ +27fouc’,
= =1
G gk, G,
VI
¢ g=1 121," ,L

4 ‘4 Ia g
G*<p3+1:5%p— =0,
2 IV

Compact form of the equations

V"%?:(V-DV+E)CD+FC
E’IB@_IAxC
Lot
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where it was put

(D(r,t)zcol[(pl,...,(pc], , c(r,t)=col[cl,...,cl‘],
Vzdmgbﬂyuyc], D@J):dmgPY,M,DGL
S=diag[c5’,...,c50], T=diag[’t],...,'ca],
G@J)=dMngW”ZG], A=dmgpL””xL]
| P 0 G xvEL e xlvz?
U | ERC =
G,(r,1) = 3 ’ dai 5 1 G G’
- vc X%, X pVZy
2
_E\[ st O__
bl ol nl. «G ] i $ w7 |
P VLf s VLf X(IIA‘ d,_
B(r,t) = ’ T =
szl o R M,k‘ o .

E(r,t) = -G(r,t) + G(r, 1), +(1- B)F(r,?)

Time integrated approach: at each step the linear variation in
time of the flux and the diffusion coefficients are assumed

(D(r,r)=CD"(r)+t;; [q;"*‘() o' ()] teltntan].

D(r,t) = D" (r) + 2 [0 () =D*(x)], 1€ [ty tpi]

At
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Direct integration of the equation of precursor concentrations

c(r,t)= exp[ (t-1, )A] "(r)+ j exp[—(r - t')A] B(r, £)(r, t')dt'

IH

exp|—(t 1, )Ake" (r) +J6XP[ (- £)A]x

X{B“ (r)+ =[B! (r)-B" (r)]} x {cp" )+ [0 (1) - 0" (r)]}df ,

At
teftytyn)

Time integration of the Kinetics equation

3 2 1 n+2 1 /3 1 1+1/3 1
V.Dn+_/3vcbr+l +Q + /3(D1+] Z—V'D”H }V(D, _Qr+1/ (Dz _ch

Definition of appearing constants

Dn+1/3 (2 / 3)Dn (1/ 3)Dn+1

D" = (1/3)D" +(2/3)D""
QR = g 4 (I/At)[(V")_] +(v)” } +TA™'(P,B" +PB"™)
Q"3 = gn+23 _ (I/At)[(V" )—1 N (V"H )-1 } " I“A‘l'(P,B" 4 PzBrH-l)

En+1/3 (7 / 3\En (1 / 3)En+] En+7/3 (1 / 3)En ( B)E, 1+1

NMNR-Unit-4 — Problems of Dynamics of Fission Reactors

46



Closed expression of the precursor concentration

¢! =exp(-AtA)e”

)
A | Lty 2

A2 A7 exp(—AtA ) B"®"

N N e T

<

r

+(Ar)4 1 — A7 ——%A“3 o — A7 ——
(Ar) (At) (Ar) (Ar)

><(B“c1>“+‘ +B“”c1>")

A7 Jexp(—AtA) X

1 2 - 2 = n n
+(Af)>< EA ]—(At)2 A 2+EA 3('—6Xp(—AfA))lB +1(D -

—

General form of the time integrated Kinetics equation

V. Dn+2/3V®n+l + Qn+2/3q)n+! + Sn+l _

Spatial discretization with the coarse-mesh technique

h
Z

ijl

Xi
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Polynomial expansion in space

l(P”'g(xay’Z):(P:’I,jﬁk(évnvg) (P,jk+al)lxq§+allq( 2__1__j+a;1,v'f(§_4§3)
( BT NP
+

Sf(é _%j+a§',’f(C—4C3)

Relations among constants and interfacial fluxes

ng n,g n,g

Axi =ik —Picin i

ng _ n,g —n,g ng
ayy = 3(‘91';;/2,,'/\' =20 Q1 )
Applications of the weighted residuals method

we=1

wE = (2p+3) 22042 7% wE = 2p+3) 2204217

2p+3

Wg = (2p+3) 22042 e=1,..,G)
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limit for p — oo on the weighting

n+l,e 2 !
athe — n+2/3,¢0p" n+l,g n+l, g’ n,g
3.0 24Dn+7/3 2 2 ,QUL 1+1/2,,/k _(Pi—1/2,jk + Rijk
ijk g'=l
/ - ~\
obtaining
n+l,g n+l,g n+l,g
a ¢ s, a
n+2/3,¢ 2,x 2,y 2,z n+7/3 eg —n+1 ¢ _
2Dy, B2 * e " 52 * QU’\ Pi =
Ly 1}',1' P2k &=l
[/1”'*? ats at g’ G =
— n+l/3,¢| “2.x _ LY WZ ad nt1/3.88 —-n § ‘ &l
= _2D([k 2 + P / Qlj/\. Piji 24 L
i Mg 1z k) g=1 .
n+l sn+1 n+l wn+1 _
[(X+Y+2)0 ]Uk +QUr ot =T L7

*n+1 142/3 n+1/3
Q ljl\ = — (D, ) Ql_]/\.

ijk

n+l n+ n+l
® 2@ +(Dt 1/2, jk

+1/2, jk
(ch)ijk - - 2
2/1“-
n+l n+ n+l1
(Yo) = D 12k _chi +D; i 12k
ijk - 2h2
¥oJ
Dnn — 205 + O
K Z ! &
(Z(D)Uk _ j j,
2/12’,\
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EXAMPLE OF 2-GROUP NEUTRON KINETICS
FOR A 1D REACTOR WITH VARIABLE COMPOSITION

1. General Two-Group Equations of Kinetics with Explicit
Source

The equations of kinetics with a source are written as:
19 az

v_a_? =V D1V¢1 - Za,1¢1 _Zs,l—>2¢l + (1 - IB) (sz,1¢1 + sz,2¢2 ) + Z ﬂdcd + Sl
1 d=l1
10

—_ a¢2 =V-D,V¢, _Za,2¢l +X .0 +S,

" 1)
aC
a—td ==4,C, +p, (Vz.f,l¢l +sz,2¢2) (d=1...N,)

where it has been implicitly assumed that all fission neutrons
are produced in the fast energy group.

For a 1D slab the equations are written as:

19¢ 9 0 <
v_la_i)l = g 1a_i1_2u,1¢1 _Zs,l—>2¢l + (l_lb))(vzf,lﬂ +V2.f¥2¢2 ) + ;ﬂdcd + Sl

10g, 9, 99,
o o Dy Teali R+ S
v, ot ox 2 dx a2P + X, 00+ S,

(2)
aC,
=E=-4Ci+h, (V2,8 +VE,,0,) (d=1,....,N,)
2. Eigenvalue problem

In steady-state conditions, assuming that no source is present,
the equations of 1D Kkinetics reduce to the following form

0 0 i
9 D1 9 ¢1 _Za,1¢l _Zs,l—>2¢l +(1_IB)(VZf,1¢l +V2f,2¢2)+zﬂ’dcd =0
X X d=1

0

0
gDz g% L2t 6 =0

3)
2C, =B, (VE, 8 +VE, ,0,) (d=1,...,N,)
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Reformulating the above by considering the latter expression
for the delayed precursors’ activity, and introducing the
eigenvalue, it is:

0 0
nga—zl_Za,l 1 s1—>2¢1 (V2f1¢1+vz’f2¢2):

0 0 4)
—D, ¢ Za,2¢2 +Zs,l—>2¢l =0
ox ox

3. Numerical discretization of transient equations

By subdividing the range of the x variable (0,a) into N
intervals, in each interval we have:

n,n+1 n,n+1 ¢n o+l n,n+1

n+l Li 1,i—1/2 Li+l/2 ~ PLi nn+l
( _¢1,) =-D,, =X 00 A -

X =X Xivy2 — %

n,n+1
A,

5,12

Ny
+ (1 - IB) (Vz’f,l lr,li!nJrl + VZf,Z Z}”+1 ) A'X"i + Z Z’dcc;l:;l+lA'xi + SlnAxi
d=1
n,n+1 n,n+1 ¢n n+l n,n+1

( - ¢2 i ) _Dz i e + D ey T Zu,Z,i¢;,;'n+lA'xi + 25,1—>2¢1y,l£n+1Axi + S;A'xi

At X = X2 Xivy2 — X

Cyl=Che i+ fd (v, 00 +vE e ) (1-e*)  (d=1....N,)

()
where the superscript n,n+/ indicates an appropriate means
between the values of the variable at the time #* and ¢*'. As it
can be noted, a semi-analytic expression was used for
integrating the neutron precursors’ equations. Moreover, it is
assumed:

¢ln ,n+l (1 9)¢ll +9¢n+1 (6)

where 0<6<1; similar relationships hold for the other
variables.

Concerning the fractional index fluxes, the usual
relationships implying the continuity of neutron current
allows eliminating them. It is:
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& =l &~
_Dl,i Y —x - _Dl,i 1 ¥ oy (7)
i i-1/2 i-1/2 i1
and then
n,n+1 ¢n ,n+l ¢n o+l n,n+l1
_Dl’i ¢1,l + Dl’l 1,i— 1/2 — _Dl’i_1 1,i— 1/2 + Dl’i_1 ¢1,l
Xi =X X =X Xicya X Xicya X
Dl i Dl i—1 | n,n+1 | Dl i—-1 n,n+1 Dl i n,n+1
’ + ’ ¢z 12 = , i T ) ¢11
X =Xy Ky X | | iy T X Xi = X2
2D1,i n 2Dl,i—l ¢n o _ 2Dl,i—l montl | 2Dl,i n.n+l
Ax,  Ax_, Liyz Ax bl Ax, b
Dl,i—l Dl,i
¢n na+l Axi—l n,n+l1 Axi n,n+l1
b D,, D, D,, D;™ &)
e g ¥ e g
Axi—l Axi Axi—l Axi
Taking into account the above relationship, it is:
n,n+l _ n,n+l 2
1,i Li-1/2 1,i n,n+1 n,n+l
_Dl,i - ¢1,i 1,i-1/2
X, =Xy Ax; Ax
Dl,i—l Dll
- _ 2D1,i n,n+1 + 2D1,i ij-] n,n+1 + Axi ¢n,n+l
Ax, . Ax, Dlt ) D, b Dlt e t] D, .
| Ax,, Ay, Ax, A, |
2D Dl i—-1 2D11 Dll
- _ 2D1,i n,n+l1 + Ax Ax n,n+l1 + Axi Axl ¢n o+l
= 1i 1i-1
Axl' Dl i-1 Dll Dl i-1 Dl i
Ax_,  Ax Ax . Ax
2D11D111 2D11D111 DlllDll
Axi A.Xl ln.,nii—l Axi A.Xl ¢n n+l — Axl 1 Axl ( n, n+1 1n',nl+1)
D111+D11 ! Dlll Dll D111+D11 !
Ax_,  Ax Ax_, Ax Ax_,  Ax
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Therefore, putting

. Dl,i—l Dlz
Dl _ sz—l sz
(Ejm Dy, D, ©)
A'xi—l Axi
it is
o ¢ et ¢nln1712 :_( D j ( el Ini,fii-l) (10)
B _xi—1/2 Ax ii—1 ’ 7
Similarly, it is also:
¢nzﬁ;12 fi,nﬂ :@ ( non+l n,n+1)
D Xi =X Ax )i . Y (11)
and
n,n+l n,n+1 2N
-D,, 2’;e—xi_21’/1:/2 =—(%l ,-_1( p - g (12)
D ¢n1T1r/12 nn+l (D j n,‘n+1 _ n,‘n+1)
’xi 1 1/2 AX i,i+1 i > (13)
With the above definitions it is:

Ax; D D,
G v —[Ej (o1 -ar7") *(Ej (Gt =)=, 00 A =, oA

Nd
+(1=B)(VE, 1 +VE 407 ) Ax, + D A, Cri Ax, + S]'Ax,

d=1

D D
(—2 (g =g )+ 2| (B =™ ) =T 0 8 A+ X, A, + Sy A,
Ax AX ;i

(¢2nz+ _¢21) At

i,i-1

Cil =Cl e +%(vzf,l¢;j;"“ +VE L) (1= ) (d=1.....N,)

d

(14)

NMNR-Unit-4 — Problems of Dynamics of Fission Reactors 53



By elaborating the equation for the first energy group, we
have:

Ax, D D
( 1r,li+1 _¢1r,li) lelt = 0|:_(Elji L ( 1’?1 - 1r,li+—11 ) + (Ell,m ( 1r,li++l1 - 1r,li+l ) _Za,l,i 1’,li+lei _Zs,l—>2¢1r,l;-lei

1

Nd
+(1- ﬂ)(vzf,1 (L z”jl)Axl.+Z/1dC5;1Ax}

d=1
D n n D n n n n
+ (1 - 6) {_(;ju_l (¢1,i - ¢1,i—1 ) + (;ji,m (¢1,i+1 - ¢1,i ) - Za,l,i¢1,iAxi - Zs,1—>2¢1,iAxi
Ny
+(1-8) (VZf’lq’f,. +VE, .0y, ) Ax, + Z 4,C} Ax, } +S'Ax.
d=1
or
_0(%J 1’,1;11
ii-1
+ &'{'0 (ﬂj +(QJ +Za1iAxi+Zsla2Axi_(1_ﬂ)VZflei lni+1
VlAt Ax ii—1 Ax i+l - ’ ’ ’
_0(%J 1nz++11
i,i+1
Ny
= 9{(1 ) (sz,z o ) Ax; + Z A,CriAx, }
d=1
A'x' n D n n D n n n n
+ lelt ¢1,i + (1 - ‘9) |:_[Ell,i1 (¢11 - ¢1,i—1 ) + (;l’m (¢1,i+1 - ¢1,i ) o Za,l,i¢l,iA'xi - Zs,l—>2¢1,iAxi
Ny
+(1=B)(VE, 8 +VE, .05 ) Ax, + szcg,imi} +S/Ax,
d=1
(15)
Therefore, putting:
D
v 45, 19
Ax, D D (1
bl,i - m +6 {( Ax lii-l + (Ax ji,i-H + Zu,l,iA'xi + Zs,l—ﬂAxi (1 :3) VEf,lA'xi:l (17)

9(2_) (18)

Ax
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Ny

0, - 9{(1%)(1/2,-,2%7‘)&,- LS A
d=1

v, Ax ),

+(1=B)(VE, ¢ +VE 8, ) Ax, +z/1 Cl Ax, }rs;’Ax.

d=1

Ax' n D n n D n n n n
+ Alt ¢1,i +(1_9){_(_1j (¢11 _¢l,i—l) lj (¢1,i+l _¢1,i)_2u,l,i¢l,iAxi _Zs,l—>2¢l,iAx
i,i—1 i,i+1

the first energy group equation takes the form
1}’Ll+11 +bll ¢n+1 n.+1 :dl’i

1,i+1

(19)

(20)

though this three-pomt equation hides in the known term the

presence of 4 and ¢, requiring a proper treatment by

iterations.

Similarly, elaborating the second energy group equation,

it is:

o 2] e

AX ii—1 ,

+ Ax,- +9 (&j +(&] +Z AX nn+l
VZAt A)C ii-1 A)C i+l

_9 D2 n,n+l
A)C 2,i+1
ii+1

(21)
(22)

(23)

_ Ax nt
¢21 + 92? 1—)2¢1 lel
v2A
D2 n n D2 n n n n n
(1 - 9) - E (¢2,i - ¢2,i—1 ) + E (¢2,i+1 - ¢2,i ) - Za,Z,i¢2,iAxi + Zs,l—>2¢l,iAxi + Sz A'xi
ii-1 ii+l
and then, putting
. E
A'x ii—1
= 2iol(2) o2 4 Ax}
% At A'x i,i-1 A'x i,i+1
=8
A'x i+l
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Ax, nt
d2‘ :_¢21 +025 1—>2¢1 'Ax,

51 V2 i
+(1-6) —(&) ((Zi"‘—(./i"‘ )+(&j (¢n‘ _¢n‘)_2 # AT FAx |+ S7Ax
Ax i 2,1 2,i—1 A.x . 2,i+1 2,0 a,2,i72,i i s,15271,i i 2 i

(24)

the formulation is reached
a,; 2nz+11 +b,, ¢n+1 +C,, ;Til = d (25)
where the three point equation again hides the presence of 4

in the known term, requiring iterations.

For the equation precursors’ concentrations, the closed
form solution

Cn+1 — C fd ( ¢n -+l +V2f’2 2n’,in+1)(1_e—/1dAt) (d :1,-~,Nd)
d
(26)

is already available for integration adopted.

4. Numerical discretization of the eigenvalue problem

Adopting the same spatial discretization used in the case of the
transient equation, it is

&)

D D, D 1
J ¢1,i—1 +|:(Elj +(Elj +Z A)C +Z€1—>21 i}@,i _(Elj ¢ll+l (VZ/‘ ll¢ll +VZJ‘ 2[¢21)
i,i—1 i,i—1 i,i+l i,i+1

D D D
ji,i—l%i_l + {(Ezju_l + (Ezlm + Za,Z,iA'xi } ¢2,i - (Ezji’m@,m = Zs,l—>2,i ¢1,iA'x

The following external (power) iteration process can be
therefore considered

D (n+1) D D (n+1) D (n+1) __ 1 n) (n)
_(El)i‘i_l Li-1 +|:(El ,-V,-_1+ El iyi+l+Za,l,iA'xi+Zs,l—>2,iAxi Li - El . Li+l k(n) (Vz’f,l,i¢l,i +VZ ¢ )A'xz

Dz j (n+1) D Dz (n+l) Dz (n+l) _ (n+1)
A ¢, + +H = +2 Ax L 2,i+1 sl~>21¢l Ax
[Ax ii-1 i Ax ii-1 Ax i,i+l Ax i,i+l

e[S

Z e

(27)

(28)
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The generational formulation for advancing the eigenvalue is

taken as:

N
(n+1) (n+1)
o Z(sz,l,i U HVE L ) Ax
k n _ k n i=

=

Z( f.Li 1(7)+V2f21¢(n))

i=1

(29)

Similar positions as in the transient case can be adopted for
solving the two-group equations by the classical internal-

external iteration scheme.

%,_/ - )

ai by; Cri
D D D D
(2] nl(2) 2] emanfe (2] amer,
Ax )iy L Ax )i \AX Ax i

ay i by ; €

— ﬂ ¢1(7+11)+ & + & +ZaliAxi+ZV1_>z,-Ax,- 1(?H)_ & .
Ax ), Ax ), Ax )i v T ’ Ax )
, : ’ _—

() ( flzl(n)+VZfzz¢(n))
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MATLAB Program

function KineticslD

o

°

% Program for neutron kinetics in a 1D slab nuclear reactor

% Walter Ambrosini, March 26th, 2008

o

°

clec, clear;
9

% Input data are assigned

% NB: Lengths are expressed in cm

% c
% Left reflector parameters

% c
nrefl = 20 ;

dxrefl = 20. ;

%

dxrl = dxrefl / nrefl ;
nl = nrefl ;
%
for i=1:nl
dx (i) = dxrl ;
xm (i) (i-0.5) * dxrl ;

o0

vl(i) 1.25e07 ;

dl (i) 1.634 ;
sal(i) = 0.00266 ;
ansfl(i) = 0. ;
sslto2(i) = 0.0276 ;
v2(i) = 2.5e05 ;
d2(i) = 0.264 ;
sa2(i) = 0.0494 ;
ansf2 (i) = 0. ;

o0

soul (i)
sou2 (i)

0. ;
0. ;

o0

end

1 = xm(nl) + 0.5 * dxrl ;

P
c

Multiplicating medium parameters

o o° od° o° W o°

nmult = 200 ;
dxmult = 200. ;
%
dxmu = dxmult / nmult;
n2 = nrefl + nmult;
%
for i=nl+1l:n2
dx (i) dxmu ;
xm (i) x1 + (i -nl - 0.5) * dxmu ;

o0

vl(i) = 1.25e07 ;
dl(i) = 1.426 ;
sal(i) = 0.01099 ;
ansfl (i) = 0.0075 ;
sslto2(i) = 0.0176 ;
v2(i) = 2.5e05 ;
d2(i) = 0.350 ;
sa2(i) = 0.09926 ;
ansf2 (i) = 0.1378 ;

o0

soul (i)
sou2 (i)

%
end
%
x2 = xm(n2) + 0.5 * dxmu ;
%
% c
% Right reflector parameters

% c

nrefr = 20 ;
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dxrefr = 20. ;
%
dxrr = dxrefr / nrefr ;
n3 = nrefl + nmult + nrefr ;
ntot = n3 ;
%
for i=n2+1:n3
dx (i) = dxrr ;
xm(i) = x2 + (i - n2 - 0.5 ) * dxrr ;

%
vli(i) = 1.25e07 ;
dl(i) = 1.634 ;
sal(i) = 0.0026 ;
ansfl(i) = 0. ;

sslto2(i) = 0.0276 ;
v2(i) = 2.5e05 ;
d2(i) = 0.264 ;

sa2(i) = 0.0494 ;
ansf2 (i) = 0. ;

%
soul(i) = 0. ;
sou2(i) = 0. ;

%
end

%
x3 = xm(n3) + 0.5 * dxrr ;

%

alef(1:n3) = 0. ;
bet (1:n3) = 0. ;

%
% c
% Parameters for kinetic calculations
% c
%

alambd (1) = 0.0127 ;

alambd(2) = 0.0317 ;

alambd (3) = 0.115 ;

alambd(4) = 0.311 ;

alambd(5) = 1.4 ;

alambd (6) = 3.87 ;
%

beta(l) = 0.000247 ;

beta(2) = 0.0013845 ;

beta(3) = 0.001222 ;

beta(4) = 0.0026455 ;

beta(5) = 0.000832 ;

beta(6) = 0.000169 ;
%

bttot = 0.

for id = 1:6
bttot = bttot + beta(id) ;
end
%

disp('Value of beta = '); disp(bttot);

o0

(=]

o0

Averaged D/dx coefficients

o0

o0
0]

o0

dlovdx (1)
d2ovdx (1)

2. * di1(1) / dx(1) ;
2. *d2(1) / dx(1) ;

o0

for i=2:n3

auxl dl(i-1) / dx(i-1) ;

aux2 dl(i) / dx(i) ;

denom = auxl + aux2 ;

dlovdx (i) = 2. * auxl * aux2 / denom ;

o0

auxl = d2(i-1) / dx(i-1) ;

aux2 d2(i) / dx(i) ;

denom = auxl + aux2 ;

d2ovdx (i) = 2. * auxl * aux2 / denom ;
end

o0

dlovdx (n3+1) = 2. * d1(n3) / dx(n3) ;
d2ovdx (n3+1) 2. * d2(n3) / dx(n3) ;

F————————————— Search for criticality ----—-
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disp('Criticality Search ');

%

%

% Interactive input for control rods

%

disp('Number of nodes in the left reflector = '"); disp(nl);
disp('Number of nodes in the multiplicating medium = '); disp(n2-nl)
disp('Number of nodes in the right reflector = '); disp(n3-n2);

%

ncrod=input ('Assign the number of control rods ');
if (ncrod>0)
for ic=1l:ncrod

disp('Control rod number = ');

disp(ic);

ncr=input ('Enter the node index of the control rod ');
disp('Present values of Sigmal and Sigma2 = ');

disp(sal (ncr));
disp(sa2(ncr));
sal (ncr)=input ('New value of Sigmal ');
sa2 (ncr)=input ('New value of Sigma2 ')
end

end;

’

o°

o

% Criticality search

Initial value of keff and fission source

o° of o

akeff = 1.;
fissou(l:nl) = 0. ;
fissou(nl+l:n2) = 1.;
fissou(n2+1:n3) = 0.;
%
% Outer Iteration loop
%

for iter=1:10000

o

’

% construction of the vectors a, b, ¢ and d for the 1lst energy group

P
c

for i=1:n3

a(i) = - dlovdx(i) ;

b(i) = dlovdx(i) + dlovdx(i+l) + ( sal(i) + sslto2(i) ) * dx(i)
c(i) = - dlovdx(i+l) ;

d(i) = fissou(i) / akeff ;

end

% Solution of the TDM system for the 1lst energy group

t(l:ntot) = 0. ;

%
[t]=tdma(a,b,c,d, alef,bet,ntot);
%
for i=1:n3
phil(i) = t(i) ;
end
%

’

P
c

% construction of the vectors a, b, ¢ and d for the 2nd energy group

for i=1:n3

a(i) = - d2ovdx(i) ;

b(i) = d2ovdx (i) + d2ovdx(i+l) + sa2(i) * dx(i) ;
c(i) = - d2ovdx(i+l) ;

d(i) = sslto2(i) * dx(i) * phil(i) ;

end

o°

% Solution of the TDM system for the 1lst energy group

t(l:ntot) = 0. ;

%
[t]=tdma(a,b,c,d,alef,bet,ntot);
%
for i=1:n3
phi2(i) = t(i) ;
end
%

% Updating keff and Fission source
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oldkef = akeff ;
sumold = 0. ;
sumfis = 0. ;
amxphl = -1. ;
amxph2 = - 1. ;
%
for i=1:n3
oldfis (i) = fissou(i) ;
fissou(i) = ( ansfl(i) * phil(i) + ansf2(i) * phi2(i) ) * dx(i)
%

sumold sumold + oldfis(i) ;
sumfis = sumfis + fissou(i) ;

o0

if (amxphl<phil(i))
amxphl = phil(i) ;
end;
if (amxph2<phi2(i))
amxph2 = phi2 (i) ;
end;

o0

amxphi = amxphl ;
if (amxphi<amxph2)
amxphi = amxph2 ;
end;
end

o0

akeff = oldkef * sumfis / sumold ;
% disp('Iteration number and keff = '), iter, akeff;

chk = num2str (akeff, '$10.5€f");
chiter = num2str(iter, '%$10.0£");

erkeff = abs( akeff - oldkef ) ;
if (erkeff<l.e-06),break,end

%
end
%
f———————— end of criticality search loop —————-—
%
% A plot of fluxes is generated
%

plot (xm(1:n3) ,phil(1:n3), 'b. "', xm(1:n3),phi2(1:n3), 'r.")
grid
xlabel('x [cm]"')
ylabel ('Normalised Neutron Flux')
axis([0., x3, 0., 2*amxphi])
title(['Iter = ', chiter,' Keff = ',chk])
h = legend('Fast Neutron Flux', 'Thermal Neutron Flux',61);

o

o° of

Preparing the transient calculation

o o° oP

Interactive input on starting criticality level

o0

aknew=input ('Assign the new Keff ');

o oP

The fission cross sections are reassigned

o0

fact = aknew / akeff ;

’

%
sumfis = 0. ;

for i=l:ntot
ansfl (i) = ansfl(i) * fact ;
ansf2 (i) = ansf2(i) * fact ;
fissou(i) = fissou(i) * fact ;
sumfis = sumfis + fissou(i) ;
end

%

%

% Transient calculation

%

%

disp('Transient Calculation ');

%

%

% Level of implicit calculation

o0
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theta=input ('Enter theta [0.=Explicit; 0.5=C-N; 1.

1. - theta ;
1. - bttot ;

cmptht
cmpbet

%
% Interactive input on localised sources
%

= Implicit] ');

disp('Number of nodes in the left reflector = '"); disp(nl);
disp('Number of nodes in the multiplicating medium = '); disp(n2-nl);
disp('Number of nodes in the right reflector = '); disp(n3-n2);

%

nsour=input ('Assign the number of localised sources

if (nsour>0)
for is=1l:nsour
disp('Localised source number = ');
disp(is);

")

nsr=input ('Enter the node index of the localised sources ');

disp('Present values of Soul and Sou2 = ');
disp(soul (nsr));
disp(sou2(nsr));
soul (nsr)=input ('New value of Soul
sou2 (nsr)=input ('New value of Sou2

')
")

’

end
end;
%
% Assigning the delayed neutron precursors concentrations at steady-state
%
for id = 1:6
for i = 1l:ntot
cd(id, i) = beta(id) * fissou(i) / alambd(id) ;
end
end
%
time = 0. ;
tread = 0. ;
%
% Time advancement loop - start
%
%
for itime=1:100000
%
% Assigning the old fluxes and precursor concentrations
%
for i = l:ntot
oldphl (i) = phil(i) ;
oldph2 (i) = phi2(i) ;
for id = 1:6
oldecd(id, i) = cd(id, i) ;
end
end
%

% Interactive input for control rod movement

if (time>=tread)

disp ('Number of nodes in the left reflector = '); disp(nl);
disp ('Number of nodes in the multiplicating medium = '); disp(n2-nl);
disp ('Number of nodes in the right reflector = '); disp(n3-n2);
%
ncrod=input ('Assign the number of control rods ');
if (ncrod>0)
for ic=l:ncrod
disp('Control rod number = ');
disp(ic);
ncr=input ('Enter the node index of the control rod ');
disp('Present values of Sigmal and Sigma2 = ');
disp(sal (ncr));
disp(sa2(ncr));
sal (ncr)=input ('New value of Sigmal ');
sa2 (ncr)=input ('New value of Sigma2 ');
end
end;
tread=input ('Assign the new break time [s] ');
dt=input ('Assign the time step [s] ');
end;
%
time = time + dt ;
tv(itime) = time ;
% disp(time);
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o

% Iteration on the implict terms on the RHS

%
for iter = 1:1000
% disp(iter);
%
%
% construction of the vectors a, b, ¢ and d for the 1lst energy group

c

o0

for i=1l:ntot

o0

a(i) = - theta * dlovdx(i) ;
%
auxl = dx(i) / ( vi(i) * dt ) ;
aux2 = dlovdx (i) + dlovdx(i+1l) ;
aux3 = ( sal(i) + sslto2(i) - cmpbet * ansfl(i) ) * dx(i) ;
b(i) = auxl + theta * ( aux2 + aux3 ) ;
%
c(i) = - theta * dlovdx(i+l) ;
%
auxl = theta * cmpbet * ansf2(i) * phi2(i) * dx(i) ;
aux2 = 0. ;
for id = 1:6
aux2 = aux2 + alambd(id) * cd(id,i) ;
end
aux2 = aux2 * theta * dx(i) ;
%
aux3 = dx(i) / ( vl(i) * dt ) * oldphl (i) ;
%
aux4 = - ( dlovdx(i) + dlovdx(i+l) ) * oldphl(i) ;
if (i>1)
aux4 = aux4 + dlovdx(i) * oldphl (i-1) ;
end;
if (i<ntot)
aux4 = aux4 + dlovdx(i+l) * oldphl (i+l) ;
end;
aux4 = aux4 - ( sal(i) + sslto2(i) ) * dx(i) * oldphl (i) ;
auxfis = ansfl(i) * oldphl(i) + ansf2(i) * oldph2(i) ;
aux4 = aux4 + cmpbet * auxfis * dx(i) ;
for id = 1:6
aux4 = aux4 + alambd(id) * oldcd(id,i) * dx(i);
end
aux4 = aux4 * cmptht ;
%
aux5 = soul (i) * dx(i) ;
%
d(i) = auxl + aux2 + aux3 + aux4 + aux5 ;
end
%
% Solution of the TDM system for the 1lst energy group
%
t(l:ntot) = 0. ;
%
[t]=tdma(a,b,c,d, alef,bet,ntot);
%
for i=1l:ntot
phil(i) = t(i) ;
end
%
% construction of the vectors a, b, ¢ and d for the 2nd energy group
%

c

for i=1l:ntot

a(i)

o0

auxl
aux2
aux3
b(i)

c(i)

auxl
aux2

o0

aux3

if(i>1)
aux3

end;

theta * d2ovdx (i) ;

dx(i) / ( v2(i) * dt ) ;
d2ovdx (i) + d2ovdx (i+l) ;

az2(i) * dx(i) ;

auxl + theta * ( aux2 + aux3 ) ;

theta * d2ovdx (i+l) ;

dx(i) / ( v2(i) * dt ) * oldph2(i) ;
theta * sslto2(i) * phil(i) * dx(i) ;

( d2ovdx (i) + d2ovdx(i+1)

) * oldph2(i)

= aux3 + d2ovdx(i) * oldph2(i-1) ;
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if (i<ntot)
aux3 = aux3 + d2ovdx(i+l) * oldph2(i+l) ;
end;
aux3 = aux3 - ( sa2(i)*oldph2(i) - sslto2(i)*oldphl(i)) * dx(i) ;

aux3 = aux3 * cmptht ;
%
aux4 = sou2 (i) * dx(i) ;
%
d(i) = auxl + aux2 + aux3 + aux4 ;
end
%
% Solution of the TDM system for the 2nd energy group
%
t(l:ntot) = 0. ;
%
[t]=tdma(a,b,c,d, alef,bet, ntot);
%
for i=l:ntot
phi2(i) = t(i) ;
end
%
% Advancing the precursors' concentrations
%
%
fisnew = 0. ;
%
for i = l:ntot
auxfo = ansfl(i) * oldphl(i) + ansf2(i) * oldph2(i) ;
auxfn = ansfl(i) * phil(i) + ansf2(i) * phi2(i) ;
fisnew = fisnew + auxfn * dx(i) ;
for id =1:6
expldt = exp ( - alambd(id) * dt ) ;
cmpexp = 1. - expldt ;
auxl = oldecd(id,i) * expldt ;
aux2 = auxfo * cmptht + auxfn * theta ;
aux2 = aux2 * cmpexp * beta(id) / alambd(id) ;
cd(id,i) = auxl + aux2 ;
end
end
fv(itime) = fisnew ;
%
% Iteration stopping criterion
%
if (iter==1)
fisold = fisnew;
else
errel = abs (fisnew - fisold ) / fisnew ;
if (errel<l.e-05), break,end
% disp (errel);
fisold = fisnew ;
end;
end
%
% Calculating the reactor period
%
if (itime>1)
recper = ( fv(itime) - fv(itime-1) ) / ( fv(itime) * dt ) ;
else
recper = ( fv(itime) - sumfis ) / ( fv(itime) * dt ) ;
end;
per = 1. / recper ;
pv(itime) = per ;
rpv(itime) = recper ;
%
% Plots of fluxes and of the overall nuetron source is generated
%

chtime = num2str (time, '$10.5f");
chiter = num2str(iter, '%$10.0£");
chfv = num2str(fv(itime), '$10.3£f");
chpv = num2str (pv(itime), '$10.3f");

o0

subplot (1,3,1);
plot (xm(1:n3),phil(1:n3), 'b. "', xm(1:n3),phi2(1:n3), 'r.")
grid
xlabel('x [cm]')
ylabel ('Normalised Neutron Flux')
axis([0., x3,0.,2*amxphi])
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title(['Time = ',chtime,' s , Iter =',6 chiter])
h = legend('Fast Neutron Flux',6 'Thermal Neutron Flux',1l);

%
subplot (1,3,2);
plot (0.,sumfis, 'r.',tv(l:itime), fv(l:itime), 'b.")
grid
xlabel ('Time [s]')
ylabel ('Normalised Fission Source')
axis([0., 50.,0.,1000.])
title(['Time = ',chtime,' s , Fission Source = ',6 chfv])
%
subplot (1,3,3);
plot (tv(l:itime) ,pv(l:itime), 'b.")
grid
xlabel ('Time [s]')
ylabel ('Reactor Period [s]')
axis([0., 50.,-100.,100.])
title(['Time = ',chtime,' s , Reactor Period = ',chpv,' [s]'
pause (0.0001);
%
%
% Time advancement loop - end
%
end
%
% End of Program
%
end
%
% %
% Solution of the tridiagonal matrix system %
% %

function [t]=tdma(a,b,c,d,alef,bet,ntot);
%
alef(l:ntot)=0.;
bet (1:ntot)=0.;
t(l:ntot)=0.;
%
ub=1.d00/b(1);
alef (1)=c(1) *ub;
bet (1)=d (1) *ub;
%
for i=2:ntot
1=i-1;
gz=b(i)-a (i) *alef(1l);
uqz=1.d00/qz;
alef (i)=c (i) *uqz;
bet (i)=(d (i) -a (i) *bet (1)) *uqz;
end
%
nml=ntot-1;
t (ntot) =bet (ntot) ;
for i=1:nml
ii=ntot-i;
1=ii+1;
t (ii)=bet (ii)-alef (ii) *t (1) ;
end

end
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Suggested activities:

1. Make a criticality calculation with the assigned values of
parameters and discretization and with no control rod. The result
should be as in the figure, where the effect of the reflector on
thermal flux can be clearly noted.

lter =80  Keff = 1.10453

100 77777777 \7777,,,,{,,,,,,,\, ,,,,,,, — _ _— — — 1
e  Fast Neutron Flux

NF-----—"————— === e Thermal Neutron Flux H

Normalised Neutron Flux

x [cm]

2. Then, assign the new K4 to unity and run an analysis of “steady”
transient calculations (no control rods, no sources, for 10 seconds,
implicit scheme, 0.1 s time step). No substantial change in
normalized power is obtained.

Time = 10.10000 s , lter =2 Time = 10.10000 s , Fission Source = 200.315 Time = 10.10000 s , Reactor Period = 7782.106 [s]
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3. Now, try a new transient of 10 s (up to the next break time of 20 s)
after inserting a control rod. Put it (e.g.) in the node 121 and
increase the ‘“sigma2” (thermal absorption cross section in the
node. You will see the power decreasing smoothly after a clear
negative ‘“prompt jump”’.
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4. Now, try restoring a lower value of the thermal absorption cross
section in the same node (121) trying to restore criticality.
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5. To end the analysis of this case, make any other change in the
number and nature of control rod and try justifying the results you
see.
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Then, invent your own problems. Good luck !
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