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CELL CALCULATIONS 

General Considerations 
 

• In heterogeneous reactors, materials are distributed in such a way 

that the reactor core is constituted by arrays of elementary units 

• The fuel elements or “assemblies” constitute a first unit whose 

replication in different directions generates the entire core 

• It is anyway more convenient to make reference to simpler 

elementary units named “cells” 

• Since the number and the detail of the calculations to be performed 

are generally considerable, the cell must be described in such a way 

that the geometry will be the simplest possible 

♦ the height of the cell is generally considered very large with 

respect to the radial dimensions, in order to accept results 

obtained by 2D calculations 

♦ square or hexagonal cells can be reduced to equivalent 

cylindrical cells, obtained by preserving the volumes of the 

various regions (Wigner-Seitz approximation) 
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• Performing cell calculations requires to know of the exact geometry 

of the cell and the availability of accurate libraries of cross sections  

• The calculations provide firstly the space-energy detailed trend of 

flux in the cell corresponding to the assigned values of material 

compositions and physical parameters (transport theory is used) 

The number of the considered energy groups can be even relatively 

large, e.g. 100 - 200 

The constants homogenized in few energy groups (e.g., 2 or 3) are then 

calculated, providing the basis for the calculation of the space-time 

distribution of neutron flux across the entire reactor (generally 

performed using diffusion) 

Elementary methods have been applied in the past in addition to 

numerical ones. Some recipes used in their developments are still used 

nowadays in codes. We will anyway omit their discussion.  

 

 

 
 

Logical flow of cell calculations 
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NUMERICAL SCHEMES 
 

Since elementary methods, whose discussion we omitted, make use of 

heavy assumptions, as flat flux profile and uniform and isotropic 

sources, it is necessary to make use of more adequate tools to evaluate 

the detailed structure (both in space and in energy) of the neutron flux 

Firstly, it is necessary to discretize the addressed energy interval into a 

generally large number of energy groups.  

The small size of the cell suggest to adopt the transport equation but, 

in general, examples of application of the calculation procedure can be 

also made making use of diffusion theory 

 

Calculation of the detailed energy spectrum with assigned buckling 

The calculations with assigned buckling are often performed in order 

to consider an element of the core (cell or assembly) as belonging to a 

larger core with its macroscopic distribution 

In fact, considering the cell or the assembly as “isolated” fails in 

considering the effect of leakages that do occur in finite cores: this 

assumed “asymptotic” spatial behavior thus improves the results of 

calculations including parametrical leakages effects 

In this purpose, let us consider as a simple example the application of 

the diffusion theory to “macro-regions” assumed to be homogeneous 

If the slowing down phase is mainly addressed, the epithermal and fast 

energy interval (0.65-1.3 eV to 14 MeV) is subdivided into a large 

number of intervals with nearly equal spacing in lethargy  

In the “macro-region” the energy-space separability of the flux is 

assumed so that: 
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In each energy interval it is assumed that: 
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From the equations with very many energy groups 
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being a lower triangular system of algebraic equations  

 Generally, in order to normalize the source, it is put: 

( )GgS gg ...,,1=χ=  

 The vector { }G
g 1,∞φ  represents the detailed asymptotic flux in 

region h . Once we are in possession of its distribution, we can 

calculate the “few group” cross sections. 

Let us assume that we need defining three “energy macro-groups”: 

 

GROUP I : fast group ( keVMeV 2014 → ) 

in this case we assume it involves the 

groups 40...,,1=g  in the detailed 

subdivision; 

GROUP II: epithermal group ( eVkeV 3.120 → ) 

e.g., corresponding to 100...,,41=g  in the 

detailed subdivision; 

GROUP III : thermal group ( eVeV 03.1 → ) that is here 

only marginally addressed. 
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In this case the cross sections for the first two energy macro-

groups are: 
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Similar formulations are applicable also for the other cross 

sections: 
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(the index h has been momentarily omitted). Programs must 

supply the full scattering matrix for large groups, including the 

terms for transfer to the thermal group: 
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• In the case of absorption cross sections it is often necessary to start 

from resonance integrals calculated with analytical treatment 

(narrow or wide resonance) or semi-analytical treatment 

(intermediate resonance) or numerical treatment (Nordheim) 

 

• We can distinguish two cases: 

♦ Homogeneous medium 

For the k-th resonance in group g it is 
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by dividing numerator and denominator by asφ , it is therefore 
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♦ Heterogeneous medium:  

For the k-th resonance in group g it is 
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and the macroscopic homogenized cross section in group g is: 
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where it was assumed that fluxes are spatially constant 

If we further assume that ( ) asu φ≅φ1 , it is: 
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where 10 VVV +=  is the cell volume; assuming again that 

( ) asu φ≈φ0  on a large share of gu∆  we would again obtain 
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• The few group cross sections can be therefore obtained 

• As an alternative to the use of diffusion theory, the transport theory 

can be use, e.g., making use of the PN and BN equations with the 

spatial asymptotic approximation (i.e., assuming a value of the 

buckling) 

• The codes normally also compute ( )µ−σ=σ 1,, gsgtr  (µ  = A32 ) and, 

collapsing the data into large groups, the cross sections I
trΣ
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 are calculated. 
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• In order to obtain these results, the libraries must contain all the 

necessary data for the involved materials 

• It is therefore possible to write the diffusion (or transport) 

equations for few groups. For three groups, for instance, it is: 
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Use of transport codes 

• The calculation scheme for a more modern cell code is not very 

different from the one reported above for the simplified case of 

diffusion 

• Traditionally, two sections of the program are considered, being 

fast and epithermal, on one side, and thermal, on the other 

 

a) Fast-epithermal spectrum in the cell 

♦ The code must have access to wide libraries in the epithermal and 

fast regions at several groups (hundreds)  

♦ The resonance integrals are made making use of the Nordheim 

technique in a full zone approach; analytical approaches are also 

used 

♦ Routines will also calculate in an automatic way the different 

needed coefficients (e.g., Dancoff)  

♦ Once the homogenized cross sections are obtained for the G groups, 

the g,∞φ  in the homogeneous medium are calculated by transport 

(PN o BN) with tentative buckling 

♦ In the detailed flux analyses some codes allow to keep separate the 

different regions (e.g., ANISN, which is a 1D SN method, see later) 

♦ The detailed energy distribution then allows to obtain constants 

with few groups 
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♦ These calculations must be repeated several times, owing to the 

different compositions present in the core 

 

b) Thermal spectrum in the cell 

♦ In principle the same considerations already applied for the 

epithermal-fast region apply 

♦ The main difference consists in the fact that the up-scattering 

makes the scattering matrix to be no more triangular and it is also 

more complicated to be obtained 

♦ Imposed buckling calculations can be made (PN or BN methods) or 

the method of collision probability, based on the integral equation, 

is also used, assuming in this case isotropic scattering 

♦ Methods based on the integro-differential equation, fully 

accounting for anisotropy can be also used  

 

c) Assembly calculations 

♦ Given the compositions of the different cells and the homogenized 

cross sections, there are different possible ways of making the 

assembly calculations  

♦ In a traditional procedure the assembly is considered as composed 

of small homogenized square cells, then  making use of diffusion or 

transport to further homogenize assuming reflective boundary 

conditions  

♦ Collapsing the cross sections to fewer groups over the entire 

assembly must then be made 

♦ A more up-to-date treatment involves to keep memory about the 

heterogeneity of the cell during further homogenization and group 

collapsing 

♦ The two routes as simply illustrated in the next page 
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Traditional approach    Modern approach 
Examples of sequences of homogenization in cell and assembly calculations 

Cell calculations with many 

groups by transport theory 

in trasporto 

Frist homogenization to 6 

groups in each cell 

Assembly calculations 

with diffusion theory 

Second homogenization 

and collapsing to 2 or 3 groups 

Cell calculations with many 

groups by transport theory 

6 or 15 group cross sections for 

the fuel and moderator regions 

2D assembly calculations 

with transport techniques 

Homogenization 

and collapsing to 2 or 3 groups 
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NEUTRON TRANSPORT EQUATION 
 

Obtaining the integro-differential form 

• We consider the change in the number of neutrons initially 

contained in an elementary volume dV  around r
�

 having direction 

of motion inside an elementary angle Ωd  around Ω
�

 and speed in an 

elementary interval dv  around v  

• In one of the possible treatments, the related balance equation can 

be obtained “following” this bunch of neutrons initially in dV , 

accounting for absorptions, scattering and sources 

• Since we “follow” the neutrons, in this treatment there are no 

explicit terms related to the leakage of neutrons through the 

interfaces, though what we will call “streaming” term can be also 

considered a “leakage” term in a control volume perspective 

• The change in the number of these neutrons in the elementary time 

interval dt  is given by 
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• Making energy to become the independent variable in place of 

velocity, we have: 
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• From left to right, we recognize the following terms in the equation: 

♦ the rate of change in neutron density 

♦ the “streaming” term (also said leakage term: see later for an 

explanation) 

♦ the collision (scattering + absorption) term 

♦ the inverted collision (“scattering”) term 

♦ the independent (assigned) source 
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• If a fission source is explicitly considered, we have: 
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which evidently assumes that the fission source is isotropic 

• The transport equation is linear; therefore, it is possible to define 

(at least formally) a Green function that provides a solution for any 

given distribution of independent sources 

 

Initial conditions 

• Assigning initial conditions does not involve special problems: an 

appropriate function representing the neutron flux or the angular 

density at t=0 is sufficient 

 

Conditions at the interfaces 

• The angular flux [density] is spatially continuous across the 

interfaces, once the direction is fixed 

♦ this follows from an obvious condition of continuity 

♦ this does not hold only if interfaces are considered as surface 

sources 

 

Boundary conditions 

• The more frequently used ones are 

♦ Free surface, i.e. interface to the void  

it applies over the boundary V∂  of a convex domain V  (i.e., non-

reentrant), such that neutrons exiting from the surface have a 

negligible probability to reenter 
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where eu
�

 is the outward directed unity vector normal to the 

boundary 
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♦ imposed incoming flux 

also this condition can be applied to the boundary V∂  of a 

domain V  and can be expressed as 

( ) ( )tErtEr ,,,,,, ΩΨ=Ωφ
����

  for  Vrue ∂∈<⋅Ω
���

,0  

♦ reflection with assigned “albedo” 

it is assumed that the flux entering through V∂  in a given 

direction is equal to a fraction ( )Eα  (“albedo”) of the exiting one 

corresponding to it by a reflection condition 
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with ( ) 1=α E  we have the pure reflection; 

♦ white or diffuse reflection 

in this case we assume that the number of neutrons exiting 

from any surface element is equal to that of entering neutrons 

and that the entering angular flux is isotropic; it is: 
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♦ variable flux with space periodicity  

this situation can be obtained for instance in the case of an 

infinite core composed by elementary cells that are all equal 

and is expressed in the form 

( ) ( )tErmrtEr l ,,,,,, Ω+φ=Ωφ
�����

 

where lr
�

 is a vector whose magnitude represents the size of the 

cell and m  is an integer number 
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Transport Equation and Neutron Balance 

• From the integro-differential equation, involving the angular flux, 

it is possible to obtain the neutron continuity equation in terms of 

scalar flux 
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• In this purpose it is sufficient to integrate both sides of the integro-

differential equation over the complete 4ππππ solid angle, i.e. over the 

full range of directions 

• The integration over Ωd , since it involves only the directions, can be 

exchanged in order of execution with space and time derivatives 

• We also make use of the following straightforward results: 
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• For the scattering term, it must be recognized that integrating over 

outgoing direction from scattering also eliminates the dependence 

on the incoming direction, as shown in the last of the following 

lines: 
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• As well known, by integrating over whatever finite volume V  and 

making use of the divergence theorem the usual principle of 

neutron conservation is obtained 

( ) ( ) ( ) ( ) =φΣ+⋅+φ
∂

∂
∫∫∫ ∂ V tVV

dVtErErdSntErJdVtEr
tv

,,,,,,,
1 ������

 

( ) ( ) ( )dVtErSdVEdtErEEr
VV s ∫∫ ∫ +′′φ→′Σ= ,,,,,
���

 

• Integrating over the complete energy spectrum, it is also possible to 

reach the energy-independent form of the conservation principle 

( ) ( ) ( ) ( ) ( )dVtrSdVtrrdSntrJdVtr
tv VV aVV

,,,,
1 �������

∫∫∫∫ =φΣ+⋅+φ
∂

∂
∂

 

• In summary, the “detailed” neutron balance represented by the 

integro-differential equation, performed direction by direction, 

obviously implies also the overall neutron balance (i.e., the 

continuity principle) that is adopted in conjunction with the Fick’s 

law to obtain the diffusion equation 

• In this latter case, the Fick’s law, as known, represents an 

approximation that is not needed when using the integro-

differential transport equation, being per se an “exact” equation of 

neutron balance and transport as well 
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THE MONOKINETIC AND STEADY-STATE 

NEUTRON TRANSPORT EQUATION 
 

• From the integro-differential equation, by eliminating the time 

dependence and assuming 1=v , it is obtained 

( ) ( ) ( ) ( ) ( ) ( )Ω+Ω′Ω′Ω→Ω′Σ=ΩΣ+Ω⋅Ω ∫ π

�������������
� ,,,,,

4
rSdrnrrnrrngrad str  

• Recalling the slowing down theory, it may be understood that the 

differential scattering macroscopic cross section, depending in 

general by both the incoming and outcoming neutron directions, 

Ω→Ω′
��

, can be actually expressed as a function of the angle ψ  

between the two directions, given by Ω′⋅Ω
��

: 

( ) ( ) ( )ψΣ=Ω′⋅ΩΣ=Ω→Ω′Σ cos,,, rrr sss

�������
 

• The scattering process, in turn, can be considered according to 

different assumptions 

♦ isotropic scattering (in the laboratory reference frame): 

( ) ( )
π

Σ
=Ω→Ω′Σ

4
,

r
r s

s

�
���

 

♦ linearly anisotropic scattering (in the laboratory reference frame): 

( ) ( ) ( ) ( )
( )ψ+

π

Σ
=Ω′⋅Ω+

π

Σ
=Ω→Ω′Σ cos1

4
1

4
, b

r
b

r
r

ss
s

�
��

�
���

 

in which b  is an appropriate non-zero constant; by integrating 

over the whole range of directions and recalling that it can be 

written 
ϕψψ=Ω ddd sen  

it is 

( ) ( )
( )∫ ∫∫

π π

π
ψψψ+ϕ

π

Σ
=ΩΩ→Ω′Σ

2

0 04
sencos1

4
, dbd

r
dr

s
s

�
���

 

By putting  

ψψ−=µ⇒ψ=Ω′⋅Ω=µ dd sencos 00

��

 

we can check that it is: 

( ) ( )
( ) ( )rdbd

r
dr s

s
s

�
�

���
Σ=µµ+ϕ

π

Σ
=ΩΩ→Ω′Σ ∫ ∫∫

π

−π

2

0

1

1 004
1

4
,  
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and moreover it is: 

( )
( )

( )
( )

( )
=

Σ

ψψψψ+ϕ
π

Σ

=
ΩΩ→Ω′Σ

ΩψΩ→Ω′Σ
=µ

∫ ∫

∫

∫
π π

π

π

r

dbd
r

dr

dr

s

s

s

s
�

�

���

��� 2

0 0

4

4
0

sencoscos1
4

,

cos,
 

( ) ( )∫∫ ∫ −

π π
=µµµ+=ψψψψ+ϕ

π
=

1

1 000

2

0 0 3
1

2

1
sencoscos1

4

1 b
dbdbd  

or 

03µ=b  

♦ generally anisotropic scattering (in the laboratory reference frame): 

in this case an expansion in series of Legendre polynomials 

( ) ( ) ( ) ( )0

0

,0
4

12
,, µΣ

π

+
=µΣ=Ω→Ω′Σ ∑

∞

=
l

l

lsss Pr
l

rr
�����

 

is used.  

 

For our present purposes, it is sufficient to recall that these 

polynomials constitute a complete set of orthogonal functions over the 

interval 11 ≤µ≤− ; a further meaning of this choice will be reported 

later. 

 These polynomials are defined as 

( ) ( ) 00100 ,1 µ=µ=µ PP   ( ) ( ) ( )010001
11

12
µ

+
−µµ

+

+
=µ −+ lll P

l

l
P

l

l
P  )1( ≥l  

It is therefore: 

( ) ( ) ( ) ( ) ....,35
2

1
,13

2

1
0

3
003

2
002 µ−µ=µ−µ=µ PP  

The orthogonality relation between these polynomials is defined as: 

( ) ( ) nmmn
n

dPP δ
+

=µµµ∫− 12

21

1 000  

From this relation, the following expression for the coefficients of 

the series can be obtained: 

 

( ) ( ) ( ) 00

1

1 0, ,2 µµµΣπ=Σ ∫− dPrr lsls

��
 

 

Obviously enough, the case of the linearly anisotropic scattering 

correspond to truncate the series of Legendre polynomials at 1=l . 
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The following plots of the first few Legendre polynomials help in 

understanding the reasons for their orthogonality (check graphically) 

and the fact that odd or even numbered polynomials are odd or even 

functions, having symmetric positive and negative roots. 
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THE MONOKINETIC AND STEADY-STATE 

CASE IN PLANE 1D GEOMETRY 
 

Obtaining the equation 

• It is assumed that the characteristics of the region depend only of 

the single spatial coordinate x  

• Both the angular density and the source will depend, in addition, by 

θ=µ≡Ω cosx . It is: 

( ) ( )µ=Ω= ,, xnxnn x  ( )
x

n
xngradr

∂

∂
µ=µ⋅Ω ,�

�

    ( ) ( )µ=Ω= ,, xSxSS x  

( )xtt Σ=Σ   ( ) ( )µΣ=ΩΣ=Σ ,, xx sxss  

• We assume that the scattering source is linearly anisotropic in the 

laboratory reference frame. It is: 
( )

( ) ( )
( )

( ) ( ) ( )µ+Ω′µ′ψ+
π

Σ
=µΣ+

∂

µ∂
µ ∫ π

,,cos1
4

,
,

4
xSdxnb

x
xnx

x

xn s
t  (°) 

0cos µ=Ω′⋅Ω=ψ
��

 xΩ′≡µ′  

• Considering the Figure below, it is: 

( ) ( ) ( ) =ϕ′−ϕΩ′Ω+Ω′Ω=Ω′+Ω′⋅Ω+Ω=Ω′⋅Ω=µ ⊥⊥⊥⊥ cos0 xxxx

������

 

( )ϕ′−ϕµ′−µ−+µ′µ= cos11 22
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By integrating both sides of (°) on π≤ϕ≤ 20  and making use of the 

definitions: 

( ) ( ) ( )µπ=ϕµ=µ ∫
π

,2,,
~ 2

0
xndxnxn  ( ) ( ) ( )µπ=ϕµ=µ ∫

π
,2,,

~ 2

0
xSdxSxS  

we obtain 

( ) ( )
( )

( ) ( ) ( )µ+Ω′µ′µ+ϕ
π

Σ
=µΣ+

∂

∂
µ ∫ ∫

π

π
,

~
,1

4
,

~
~

2

0 4 0 xSdxnbd
x

xnx
x

n s
t  

and then 

( ) ( )
( )

( ) ( ) ( )µ+Ω′µ′µ′µ+
Σ

=µΣ+
∂

∂
µ ∫ π

,
~

,1
2

,
~

~

4
xSdxnb

x
xnx

x

n s
t   (°°) 

In the above, use is made of the relationship 

( ) ( )[ ] ( )µ′µ+π=ϕϕ′−ϕµ′−µ−+µ′µ+=ϕµ+ ∫∫
ππ

bdbbdb 12cos1111
2

0

222

0 0  

• Considering that ϕ′µ′=Ω′ ddd , it is then: 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫∫
π

−−π
µ′µ′µ′µ+=µ′µ′µ′µ+ϕ′=Ω′µ′µ′µ+

2

0

1

1

1

14
,

~
1,1,1 dxnbdxnbddxnb  

and Eq. (°°) becomes: 

( ) ( )
( )

( ) ( ) ( )µ+µ′µ′µ′µ+
Σ

=µΣ+
∂

∂
µ ∫− ,

~
,

~
1

2
,

~
~

1

1
xSdxnb

x
xnx

x

n s
t  

Finally, dropping the “tilde” (i.e., dividing by 2ππππ), we have: 

( ) ( )
( )

( ) ( ) ( )µ+µ′µ′µ′µ+
Σ

=µΣ+
∂

∂
µ ∫− ,,1

2
,

1

1
xSdxnb

x
xnx

x

n s
t   (°°°) 

Spherical harmonics 

• Even the angular density of neutrons can be expressed in the form 

of a series of Legendre polynomials with coefficients depending on 

the spatial coordinate 

( ) ( ) ( )∑
∞

=

µ
+

=µ
0 2

12
,

k

kk Pxn
k

xn  

with 

( ) ( ) ( ) µµµ= ∫− dPxnxn kk

1

1
,  

• In particular, we note that it is: 

( ) ( ) ( ) ( ) ( )xdxndPxnxn ρ=µµ=µµµ= ∫∫ −−

1

10

1

10 ,,  

( ) ( ) ( ) ( ) ( ) ( ) ( )xJxJdxndxndPxnxn xx ==µΩΩ=µµµ=µµµ= ∫∫∫ −−−

1

1

1

11

1

11 ,,,
�
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• Also the source, that is generally anisotropic, can be expressed in 

terms of a series of Legendre polynomials 

( ) ( ) ( )∑
∞

=

µ
+

=µ
0 2

12
,

k

kk Pxs
k

xS   ( ) ( ) ( ) µµµ= ∫− dPxSxs kk

1

1
,  

• If we substitute this equation into (°°°), we have 

( ) ( ) ( ) ( ) =µ
+

Σ+µµ
+

∑∑
∞

=

∞

= 00 2

12

2

12

k

kkt

k

k
k Pxn

k
xP

xd

ndk
 

( )
( ) ( ) ( ) ( ) ( )∑∑∫

∞

=

∞

=
−

µ
+

+µ′µ′
+

µ′µ+
Σ

=
00

1

1 2

12

2

12
1

2 k

kk

k

kk
s Pxs

k
dPxn

k
b

x
 

Making use of the recurrence formulation of Legendre polynomials, 

written in the form 

( ) ( ) ( ) ( ) ( )µµµµ 11112 −+ ++=+ kkk PkPkPk  

for the first term of the balance equation it is 

( ) ( ) ( ) ( )[ ]∑∑
∞

=
−+

∞

=

µ+µ+=µµ
+

0

11

0

1
2

1

2

12

k

kk
k

k

k
k PkPk

xd

nd
P

xd

ndk
 

• Considering the already seen form of the Legendre polynomials of 

order 0 and 1 (respectively, ( ) 10 =′µP  and ( ) µµ ′=′
1P ), and making use 

of the orthogonality relation  

( ) ( ) nmmn
n

dPP δ
+

=µµµ∫− 12

21

1 000  

we have (follow the chain of equalities): 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )∑ ∫∑∫
∞

=
−

∞

=
−

′′′+′
+

=′′
+

′+
0

1

1
10

0

1

1 2

12

2

12
1

k

kk

k

kk dPPbPxn
k

dPxn
k

b µµµµµµµµµ

( ) ( ) ( ) ( ) ( ) ( ) ( )µ+µ=µ+=





δ

+
µ+δ

+

+
= ∑

∞

=
110010

0
10

12

2

12

2

2

12
PxnbPxnxnbxn

k
b

k
xn

k

k

kkk  

• It is therefore 

( ) ( ) ( )[ ] ( ) ( ) ( )∑∑
∞

=

∞

=
−+

+
Σ+++

00

11
2

12
1

2

1

k

kkt

k

kk

k Pxn
k

xPkPk
xd

nd
µµµ  

( )
( ) ( ) ( ) ( )[ ] ( ) ( )∑

∞

=

+
++

Σ
=

0

1100
2

12

2 k

kk
s Pxs

k
PxnbPxn

x
µµµ  
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• Now, by multiplying both sides of the previous equations by ( )µlP  

and integrating on 11 ≤µ≤− , it can be found: 

( ) ( ) ( ) ( ) ( ) ( )xsxn
b

xnxxnx
xd

nd

l

l

xd

nd

l

l
lllslt

ll +





+Σ=Σ+

+

+
+

+
+−

1100
11

312

1

12
δδ  

( )...,1,0=l  

♦ In fact, it can be noted that: 

( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( ) ( )[ ] ( )

( ) ( ) ( )[ ] ( )

12

1

1212

2
)1(

2

1

12

2
)(

2

1

)1(
2

1
)(

2

1

2

1
1

2

1

1
2

1

1111

1

1

1
1

1

1

1

1
0

1

1

1
0

1

1

1
0

11

+

+
+

+
=

+
++

+
=

++=

++=

++

+−+−

−

+

−

−

−

∞

=
−

−

∞

=
+

−

∞

=
−+

∫∫

∫ ∑∫ ∑

∫ ∑

l

l

xd

nd

l

l

xd

nd

l
l

xd

nd

l
l

xd

nd

dPPl
xd

nd
dPPl

xd

nd

dPPk
xd

nd
dPPk

xd

nd

dPPkPk
xd

nd

llll

ll

l

ll

l

l

k

k

k

l

k

k

k

l

k

kk

k

µµµµµµ

µµµµµµ

µµµµ

 

Moreover, it is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )xnx
l

xn
l

x

dPPxn
l

xdPPxn
k

x

ltlt

lllt

k

lkkt

Σ=
+

+
Σ=

+
Σ=

+
Σ ∫∫ ∑

−−

∞

=

12

2

2

12

2

12

2

12 1

1

1

1
0

µµµµµµ

 

 and 
( )

( ) ( ) ( ) ( )[ ] ( )

( )
( ) ( ) ( ) ( ) ( ) 





+Σ=









+×
+

+×

Σ
=

+
Σ

∫−

llsll
s

l

s

xn
b

xnxxnbxn
x

dPPxnbPxn
x

11001100

1

1
1100

31)1(2

2

1)0(2

2

2

2

δδδδ

µµµµ

 

 and finally 

( ) ( ) ( ) ( ) ( )xs
l

xs
l

dPPxs
k

ll

k

lkk∫ ∑−

∞

=

=
+

+
=

+1

1
0 12

2

2

12

2

12
µµµ  

♦ The obtained one is a system of infinite ordinary differential 

equations completely equivalent to the original partial differential 

equation 

♦ The single assumption introduced in their development is related to 

the fact that linear anisotropy of the scattering source 

♦ The use of Legendre polynomials in place of the more general 

“spherical harmonics” has been possible owing to the symmetry 

that is obtained in the planar geometry around the x axis 
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♦ In fact, the spherical harmonics, in their most general form 

constitute an orthonormal basis of functions that can be used to 

express in the form of a series any other sufficiently regular 

function of colatitude and azimuth, θ  and ϕ .  

♦ They have the form 

( )
( )
( )

( ) ϕθ
+

−

π

+
=ϕθ imm

llm eP
ml

mll
Y cos

!

!

4

12
,   and it is ( ) ( ) ( )ϕθ−=ϕθ− ,1,

*
,, ml

m
ml YY  

where ( )ϕθ,*
lmY  represents the complex conjugate of ( )ϕθ,lmY  and the 

Legendre associated functions are defined as 

( ) ( ) ( ) ( )
m

l
m

mmm
l

d

Pd
P

µ

µ
µ−−=µ

2211   )...,,1,0( lm =  

♦ In other words, they can represent any function defined on a sphere 

having unit radius and depending only on the above angles (as on 

an ideal spherical earth would be for the geological corrugations) 

♦ Given a function ( )ϕθ,f , it is therefore 

( ) ( )ϕθ=ϕθ ∑ ∑
∞

= −=

,,
0l

l

lm

lmlmYff   ( ) ( ) ( )θϕθϕθϕ= ∫ ∫
π

−
cos,,

2

0

1

1

*
dYfdf lmlm  

where use was made of the orthogonality relationship 

( ) ( ) ( ) mmllmllm dYYd ′′

π

− ′′ δδ=θϕθϕθϕ∫ ∫
2

0

1

1

*
cos,,  

♦ As the Legendre polynomials, to which they are identical when 

0=m  (i.e., ( ) ( )µ=µ ll PP
0 ), also the Legendre associated functions 

possess an orthogonality property 

( ) ( ) ( )
( ) ll

m
l

m
l

ml

ml

l
dPP ′− ′ δ

−

+

+
=µµµ∫ !

!

12

21

1
 

and can be obtained by a recurrence relationship as  

( ) ( ) ( ) ( ) ( )[ ]µ++µ+−
+

=µµ −+
m

l
m

l
m

l PmlPml
l

P 111
12

1
 

Assuming θ=µ cos , the first Legendre associated functions are 

( ) ( ) θ−=µ−−=µ sen1
2121

1P   ( ) ( ) θθ−=µµ−−=µ cossen313
2121

2P  

( ) ( ) θ=µ−=µ 222
2 sen313P  
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PN approximations and the particular case of P1 

a) The PN equations and the related boundary conditions 

• An approximate solution of the system of infinite equations reached 

in terms of spherical harmonics can be obtained by truncating the 

series 

• In particular, truncating the development at N+1-th term 

(l=0,1,…,N) the PN approximation is obtained 

• Concerning the 1+N  boundary conditions to be imposed, a 

difficulty arises in the case of a medium facing the void, since the 

angular flux is discontinuous while passing from 0<µ  to 0>µ ; in 

fact: 

( ) 0,,, =Ωφ tEr
��

  for  Vrue ∂∈<⋅Ω
���

,0  

( ) 0,,, ≠Ωφ tEr
��

  for  Vrue ∂∈>⋅Ω
���

,0  

• It is obvious that a relatively low order polynomial cannot 

adequately represent this angular discontinuity in the angular flux 

• Some practical rules that allow for an approximation of the true 

boundary conditions were proposed. We will express them in term 

of flux, since in our one-velocity case we have φ≡n  

• The first rule, with reference to an isolated layer with ax ≤≤0 , is 

known as the Marshak boundary conditions and consists in choosing 

an odd N  and imposing: 

( ) ( ) ( ) ( ) ( ) oddNNidaPdP ii ...,,5,3,10,,0
0

1

1

0
=== ∫∫ −

µµφµµµφµ  

In the case 1=i , we have, in fact, the condition of zero entering 

current which is the one actually used in diffusion cases: 

( ) ( ) 0,,0
0

1

1

0
=µµφµ=µµφµ ∫∫ −

dad  

• A second rule is the one under the name of Mark boundary 

conditions, consisting in imposing that it is: 

( ) ( )( ) oddNNiii 2/1...,,3,2,100,0 +=>= ++ µµφ  

( ) ( )( ) oddNNia ii 2/1...,,3,2,100, +=<= −− µµφ  

where +µi  and −µi  identify respectively the positive and negative 

roots of the equation 

( ) 01 =µ+NP  

(remember the shape of the Legendre polynomials) 
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• It has been shown that the Mark boundary conditions imply the 

substitution of the void space with a purely absorbing medium 

• In the case of “pure reflection” at a boundary, we have instead no 

problem. In fact, the conditions  

( ) ( ) ( )10,0,0 <µ<µ−φ=µφ  e ( ) ( ) ( )01,, <µ<−µ−φ=µφ aa  

immediately translate into requiring that 

( ) ( ) oddiaii 00 == φφ  

i.e., the angular flux at the boundary must be an even function of 

µ . 

 

b) P1 Approximation 

In this case it is: 

( ) ( ) ( ) ( ) ( )µ+=µ
+

≅µ ∑
=

xnxnPxn
k

xn
k

kk 10

1

0 2

3

2

1

2

12
,  

• The related differential equations are: 

( )0=l   ( ) ( ) ( ) ( ) ( )xsxnxxnx
xd

nd
st 000

1 +Σ=Σ+  

( )1=l   ( ) ( ) ( ) ( ) ( )xsxnx
b

xnx
xd

nd

xd

nd
st 111

20

33

2

3

1
+Σ=Σ++  

(check the correctness of this form as a simple exercise) 

 

• Putting ( ) 02 =xn , as it must be for P1, and assuming that the source 

is independent and isotropic ( ( ) 01 =xs ) from the second equation we 

get the following one 

( )
( ) xd

nd
xn

st

0
1

3

1

Σµ−Σ
−=  

which, remembering that ( ) ( )xxn ρ=0  and ( ) ( )xJxn =1 , expresses 

the Fick’s law of diffusion: 

( )
xd

d
DxJ

ρ
−=   ( )

( ) ( )µ−Σ
≈

Σµ−Σ
=

13

1

3

1

sst

xD  
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• By introducing this result in the equation for 0=l , having the role 

of a continuity equation, it is: 

( ) ( ) ( ) ( ) 00 =+ρΣ−






 ρ
xsxx

xd

d
xD

xd

d
a  

 

 So, it is quite interesting to see that, in the limit of the considered 

assumptions, the P1 approximation coincides with the diffusion equation 

with the transport correction for the diffusion coefficient 
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INTEGRAL EQUATION 
 

Derivation 

• The transport equation in integral form (Perierls equation) can be 

obtained directly on the basis of simple considerations or even from 

the integro-differential equation 

• For the sake of simplicity, let us consider the steady-state case, 

bring of greatest interest for applications. The transient treatment, 

anyway, is not too complex (see Bell & Glasstone, 1979, Par. 1.2). 

• The integro-differential equation for transport in steady-state 

( ) ( ) ( )ΩΣ+Ω⋅Ω
������

� vrnvrvvrngradv tr ,,,  

( ) ( ) ( )Ω+Ω′′Ω′′Ω→Ω′′Σ′= ∫∫
�������

vrSdvdvrnvvrv s ,,,  

can be rewritten in terms of emission density 

( ) ( ) ( ) ( )Ω+Ω′′Ω′′Ω→Ω′′Σ′=Ω ∫∫
���������

vrSdvdvrnvvrvvrq s ,,,,  

and expressing the first term in the left hand side as a local 

(directional) derivative of angular density along the direction of 

motion of neutrons; it is: 

( ) ( )Ω⋅Ω=ΩΩ−−
=

������
� vrngradvvsrn

sd

d
v r

s

,,

0

 

We have then: 

( )
0

,

=

ΩΩ−−
s

vsrn
sd

d
v

���
( ) ( ) ( )Ω=ΩΣ+

�����
vrqvrnvrv t ,,,  

Now we can note that in every points of the trajectory of neutrons, a 

similar equation can be written for any Ω
�

 and r
�

 

 

 

 

 

 

 

 

 

   a)       b) 

Definizione di vettori rilevanti  nella derivazione 

�
r

� �

r s− Ω

� �

r s− 0Ω

�

Ω

� �

r s− 0Ω

�
r

�

Ω V
V

∂ V
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• Therefore, considering a generic location “upstream” the 

considered location, identified by the coordinate s , we have 

( )ΩΩ−−
���

vsrn
sd

d
v , ( ) ( ) ( )ΩΩ−=ΩΩ−Ω−Σ+

��������
vsrqvsrnvsrv t ,,,  

this relationship, once r
�

 and Ω
�

 are assigned, gives rise to a 

differential equation in terms of ordinary derivatives 

• This equation can be integrated between Ω−
��

0sr  and the generic 

location Ω−
��

sr  through a usual variable separation technique 

( )=ΩΩ−
���

vsrn
sd

d
, ( ) ( ) ( )ΩΩ−−ΩΩ−Ω−Σ

��������
vsrq

v
vsrnvsrt ,

1
,,  

providing the solution 

( ) ( ) ( )∫ΩΩ−=ΩΩ−
′Ω′−Σ−

0
,

0 ,,

s

s t sdvsr
evsrnvsrn

��������
 

( ) ( )∫ ′ΩΩ′−∫+
′

′′Ω′′−Σ−0
,

1,s

s

sdvsr
sdvsrq

v
e

s

s t
���

��

 

• Since the objective of this process is to evaluate the angular density 

at r
�

, i.e. for 0=s , from the previous one we obtain 

( ) ( ) ( )∫ΩΩ−=Ω
′Ω′−Σ−

0

0
,

0 ,,

s

t sdvsr
evsrnvrn

�������
 

( ) ( )∫ ′ΩΩ′−∫+
′

′′Ω′′−Σ−0
0

0

,
,

1s sdvsr
sdvsrq

v
e

s

t
���

��

 

• The angular density in r
�

 is obtained by the summation of two 

contributions: 

♦ the one due to the neutrons that at the location Ω−
��

0sr  have a 

velocity v  and direction of motion Ω
�

, times the probability of 

experiencing no collisions between Ω−
��

0sr  and r
�

 

♦ the summation of the elementary contributions due to emission 

density, q  at locations Ω′−
��

sr , with [ ]0,0 ss ∈′ times the probability 

of experiencing no collisions before reaching r
�

 

 

The isolated body 

• Selecting the coordinate 0s  on the boundary of domain V , we 

impose that 

( ) 0, =Ω
��

vrn   for any Vrue ∂∈<⋅Ω
���

,0  

as it must be for an isolated body, and it is 
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( ) 0, =ΩΩ−
���

vsrn o  

thus obtaining 

( )=Ω
��

vrn ,
( ) ( )( )

∫
Ω ′′Ω′′−Σ−

′ΩΩ′−∫
′�� �� ���,

0

,0
0 ,

1rs sdvsr
sdvsrq

v
e

s

t

 

where the dependence of 0s  on r
�

 and Ω
�

, in relation to the 

particular geometry of the volume V , has been pointed out 

• We now assume that the scattering reactions are isotropic in the 

laboratory reference frame and that the independent sources are 

also isotropic; it is 

( ) ( )vvrvvr ss →′Σ
π

=Ω→Ω′′Σ ,
4

1
,

����
 e ( ) ( )vrSvrS ,

4

1
,

���

π
=Ω  

and therefore 

( ) ( )vrqvrq ,,
���

≡Ω  

• Integrating over the complete solid angle, we have 

( ) ( ) ( )( ) ( ) sdvsrq
v

eddvrnvr
rs sdvsr

s

t ′Ω′−∫Ω=ΩΩ=ρ ∫ ∫ ∫
π π

Ω ′′Ω′′−Σ−
′

,
1

,,

4 4

,

0

,0
0

�����
�� ��

 

• We then make use of useful definitions  

rrssrr ′−=′⇒Ω′−=′
�����

  e sddsVd ′Ω′=′ 2
 

recognising that 

rr

rr

s

rr

′−

′−
=

′

′−
=Ω ��

����
�

   
22

rr

Vd

s

Vd
sdd

′−

′
=

′

′
=′Ω ��  . 

 

Definition of the volume of integration around r ′
�

 

• We also define the optical path 

( ) ( ) sdvsrvrr
s

t ′′Ω′′−Σ≡′τ ∫
′

0
,,,
����
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representing the number of mean free paths for any type of collisions 

covered by the integration distance 

• In the case of an homogeneous body, it is 

( ) ( ) ( ) rrvsvvrr tt ′−Σ=′Σ=′τ
����

,,  

• The exponential ( )vrr
e

,, ′τ−
��

 represents therefore the probability that a 

neutron emitted in r ′
�

 with velocity v  (in the direction of r
�

) has of 

reaching r
�

 without colliding along the path 

• Making use of these definitions, it is 

( ) ( ) ( )
2

,,
,

1
,

rr

Vd
vrq

v
evr

V

vrr

′−

′
′=ρ ∫

′τ−
��

�� ��

 

Remembering the definition of emission density, it is: 

( )
( )

( ) ( ) ( ) Vdvdvrvvr
v

v
vrS

vrr

e
vr s

V

vrr

′




 ′′′ρ→′′Σ
′

+′
′−π

=ρ ∫∫
∞

′τ−

02

,,

,,,
1

4
,

���

��

�
��

 

• In a mono-energetic case ( ( ) ( )rvvrv ss

��
Σ≡→′Σ= ,,1 ) it is: 

( )
( )

( ) ( ) ( )[ ] VdrrrS
rr

e
r s

V

rr

′′ρ′Σ+′
′−π

=ρ ∫
′τ−

���

��

�
��

2

,

4
 

• We note that: 

♦ The formulations obtained involve a volume integral over the 

domain V (and, possibly, one over velocity) 

♦ They express the density of neutrons in the generic location r
�

 as 

a result of the contributions of the emission density in elementary 

volumes Vd ′  

♦ The contributions are weighted according to the probability to have 

no collisions during the path and to the geometric attenuation 

expressed by the factor ( )2
41 rr ′−π

��
 

 

Numerical solution for the isolated body 

• The above interpretation suggests an algorithm for the 

approximate solution of the transport problem for an isolated body 

in steady conditions, called the collision probability method 

• The integration domain V  is subdivided into a number VN  of 

control volumes in which it is assumed that neutron density and 

sources are uniform 
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• Each volume is assigned a value of neutron density that represents 

the averaged actual values 

( ) ( ) )...,,1(,
1

Vi

Vi
i NiVrrdVr

V
i

=∈ρ≅ρ≡ρ ∫
���

 

• Making use of the relationship 

( )
( )

( ) ( ) ( )[ ] VdrrrS
rr

e
r s

V

rr

′′ρ′Σ+′
′−π

=ρ ∫
′τ−

���

��

�
��

2

,

4
 

the previous formulation can be rephrased as 
( )

( ) ( ) ( )[ ] )...,,1(
4

1
2

,

V

V V

s

rr

i
i NiVdrrrS

rr

e
dV

V
i

=′′ρ′Σ+′
′−π

≡ρ ∫ ∫
′τ−

���

��

��

 

• It is therefore possible to write 
( )

[ ] )...,,1(
4

1

1
2

,

V

V

N

j V

jjsj

rr

i
i NiVdS

rr

e
dV

V
i

V

j

=′ρΣ+
′−π

≡ρ ∫ ∑ ∫
=

′τ−

��

��

 

• Finally, putting 
( )

)...,,1,(
4

1
2

,

, V

V V

rr

i
ji NjiVd

rr

e
dV

V
A

i j

=′
′−π

≡ ∫ ∫
′τ−

��

��

 

a linear system in nodal densities is obtained 

( )V

N

j

ijsjjii NiqA
V

...,,1
1

, =+ρΣ=ρ ∑
=

 

where   ( )V

N

j

jjii NiSAq
V

...,,1
1

, == ∑
=

 

• The system can be solved with any of the already seen usual 

techniques 

• It can be found that the constants jiA ,  are related to the probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subdivision of volume V  in control volumes 

V
 

iV

jV
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of “first collision” in iV  of neutrons emitted in jV . In fact, by 

definition, it is: 

( )
( ) ( )

∫ ∫∫∫ Σ=′
′−π

Σ=′
′−π

Σ≡
′τ−′τ−

→

i jijV

ji
j

i
ti

V

rr

Vij

i
ti

V j

rr

tiij A
V

V
Vd

rr

e
dV

VV

V
Vd

Vrr

e
dVP ,2

,

2

,
0

4

11

4
����

����

 

• Therefore, the solution of the problem requires the evaluation of 

the collision probabilities ( )0
ijP →   

Numerical solution in the case of the cell 

• In the case of the cell, the appropriate boundary condition is a 

“white” (i.e., diffuse) reflection at the cell surface 

• White reflection is generally preferred to pure reflection in cell 

calculations because, in the case of a cylindricized cell, neutrons 

having a small angle of incidence on the external cylindrical surface 

will be hardly reflected towards the fuel rod (case b), contrary to 

what would happen in the original square cell (case a). This would 

lead to overestimate the neutron flux in the peripheral part of the 

cell. The selection of a “diffuse” reflection (case c), instead, restores 

a reasonable probability that neutrons reflected from the external 

surface can intercept the fuel. 

 

a) Pure reflection b) Pure reflection c) Diffuse reflection 

 

• However, the introduction of reflection would change completely 

the development of the integral transport equation, with the need to 

consider incoming currents corresponding to outgoing ones at the 

surface 

• It is here shown that it is possible to modify the previous treatment 

concerning the “collision probability method”, by including 

reflections at the cell surface 
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• In the single energy case ( ρ=φ  since we chose 1=v ) with an external 

surface facing the void, the approximate solution iφ  is given by the 

linear system 

( )∑ +φΣ=φ
j jjjsjii SA ,,  

where 

( )

∫ ∫ ′
′−π

=
′τ−

i jV V

rr

i
ji VddV

rr

e

V
A

2

,

,
4

1
��

��

 

Introducing the collision probability 

jiti
j

i
ij A

V

V
P ,Σ=→

( )

∫ ∫ ′
′−π

Σ
=

′τ−

i jV V

rr

j

ti VddV
rr

e

V 2

,

4
��

��

 

the system can be interestingly rewritten as 

( )∑ +φΣ=φΣ →j jjsjijjitii SPVV  

 having an obvious meaning: collisions in volume Vi are due to the 

emissions in all the Vj multiplied by the collision probability from 

volume j to volume i. 

• We can generalize the algorithm considering a multi-group energy 

approach 

( )∑ ∑ +φΣ=φΣ
′

′→′
→j

g
jg

g
j

gg
sj

g
ijj

g
i

g
tii SPVV  

• In the case of white reflective boundary, a similar calculation 

scheme is possible, avoiding complications due to the consideration 

of incoming and outgoing currents 

• We now define 

∑
















=−= →→ i j

g

ij

g

Sj

flightfirstitsatSboundarythereaches

Vinproducedggroup

energytheofneutronathatyprobabilit

PP 1  

















=
Σ

= →→

flightfirstitsatVincollides

Sbyreflectedggroup

energytheofneutronathatyprobabilit

P
S

V
P

i

g

Si
tiig

iS

4
(

1
) 

                                                           

(
1
)  We accept this formulation without demonstration. 
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=−= ∑ →→

Sagainreaches

Sbyreflectedggroup

energytheofneutronathatyprobabilit

PP
i

g

iS

g

SS 1  

• We put therefore 

( ) ...
~ 2

++++= →→→→→→→→→→
g

iS
g

SS
g

Sj
g

iS
g

SS
g

Sj
g

iS
g

Sj
g

ij
g

ij PPPPPPPPPP  

that can be read as: 

=
















i

j

Vincollides

Vinemitted

ggrouptheofneutronathatyprobabilittotal

 

















=

i

j

Vinflightfirsttheatdirectlycollides

Vinemitted

ggroupofneutronathatyprobabilit

 

















+

SinreflectionaafterVin

collidesVinemitted

ggroupofneutronathatyprobabilit

i

j  

















+

SinsreflectiontwoafterVin

collidesVinemitted

ggroupofneutronathatyprobabilit

i

j  

...+
















+

SinsreflectionthreeafterVin

collidesVinemitted

ggroupofneutronathatyprobabilit

i

j  

• Considering the above geometric progression, it is therefore 

g
SS

g
iS

g
Sjg

ij
g

ij
P

PP
PP

→

→→
→→

−
+=

1

~
 

and the solution scheme for the cell with diffuse reflection is 

formally the same found for the isolated body, provided we 

substitute the “first flight” collision probabilities with the ones 

combined with reflection 

( )∑ ∑ +φΣ=φΣ
′

′→′
→j

g
jg

g
j

gg
sj

g
ijj

g
i

g
tii SPVV

~
 

• The calculation of g
ijP →

~
 (and of g

ijP → ) represents an heavy task to 

be performed, for which specific techniques have been developed 

 

 


