Course on “Operation and safety of PWRs”
C. Renault, P. Dumaz, JC. Klein, H. Grard, F. Fouquet (CEA) + Specialists (AREVA) + Specialists (EDF)

<table>
<thead>
<tr>
<th>Units and LO Statements</th>
<th>Responsibility / Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1 – Operation under normal conditions (18 hours)</td>
<td>Architecture and related operation of a PWR (EQF=7)</td>
</tr>
</tbody>
</table>
| - Architecture and functional analysis of PWRs (primary and secondary components, containment building, auxiliary systems) | - Basic principle of PWRs
 - Core physics
 - Thermal-hydraulics
 - 1300 MWe PWR architecture
 - Function and design of safety equipment
 - Comparison to other designs
 - Normal operation
 - Base load operation
 - Start-up
 - Shutdown
 - Safety in operation. |
| - PWR normal operation
 - Base load operation
 - Start-up procedures
 - Shutdown procedures | - Make safety study while referring to safety regulation |
| - PWR control aspects
 - Load-follow operation
 - Performance of control modes | - Use the most appropriate safety approach |
| - Safety in operation
 - Regulation
 - Protection systems and procedures
 - Typical operational transients
 - PWR core and fuel management
 - Practicals on PWR simulator and training reactor. | - Get familiar with realistic PWR complex operation |
| Assessment criteria = to demonstrate mastery of basic nuclear reactor physics and operation | - Understand the main accident sequences and the role of operators |

<table>
<thead>
<tr>
<th>Unit 2 – Safety in accidental conditions (12 hours)</th>
<th>Safety approach; Management of transient and accident operation (EQF=7)</th>
</tr>
</thead>
</table>
| - PWR safety approach
 - Deterministic approach
 - Probabilistic approach
 - Calculation tools
 - Practicals on PWR simulator and training reactor.
 - PWR safety systems
 - Accidental scenarios
 - Loss of Coolant Accidents (LOCA)
 - Steam Generator Tube Ruptures (SGTR)
 - Steam Line Secondary Break
 - Reactivity Initiated Accidents (RIA).
 - Post-accident management (state-oriented approach)
 - Innovative tracks of LWRs
 - Burn-up, conversion ratio, materials and fuels | - Safety study rules.
 - Safety methodologies.
 - In situ analysis of reactor control.
 - Realistic operational transients.
 - Main accident sequences of a PWR.
 - Loss of Coolant Accidents (LOCA).
 - Steam Generator Tube Ruptures (SGTR).
 - Steam Line Secondary Break.
 - Reactivity Initiated Accidents (RIA).
 - The TMI-2 accident.
 - Initiators.
 - Development.
 - Consequences.
 - Innovative designs. |

<table>
<thead>
<tr>
<th>Skills</th>
<th>Knowledge</th>
</tr>
</thead>
</table>
| - Understand basic principles of PWRs operation
 - Be able to connect safety equipment with their function
 - Understand the needs of safety regulation
 - Link the safety needs to their related equipment | - Understand the main accident sequences and the role of operators |

<table>
<thead>
<tr>
<th>Responsibility / Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture and related operation of a PWR (EQF=7)</td>
</tr>
<tr>
<td>Safety approach; Management of transient and accident operation (EQF=7)</td>
</tr>
</tbody>
</table>
Recommended assessment methods: Written test and/or oral face to face interview

Course applicable (in part) for the following job profiles:

- 1.0.01: Nuclear Safety Manager
- 1.0.02: Safety Assessment Specialist
- 1.0.10: Safety Design Engineer
- 1.2.01: Design Manager
- 1.2.09. System Design Engineer
- 1.4.07. Licensing Manager
- 2.1.06. Engineering Manager
- 2.1.07. Operation Manager
- 2.2.01. Shift Engineer
- 2.2.02. Senior Reactor Operator/CRO
- 2.6.01. Safety and Security Manager